Skip to content
代码片段 群组 项目
shared.py 46.4 KB
更新 更旧
  • 了解如何忽略特定修订
  • d8ahazard's avatar
    d8ahazard 已提交
    import datetime
    
    d8ahazard's avatar
    d8ahazard 已提交
    import sys
    
    import time
    
    d8ahazard's avatar
    d8ahazard 已提交
    
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
    import modules.interrogate
    
    EyeDeck's avatar
    EyeDeck 已提交
    import modules.memmon
    
    d8ahazard's avatar
    d8ahazard 已提交
    import modules.styles
    
    import modules.devices as devices
    
    from modules import localization, script_loading, errors, ui_components, shared_items, cmd_args
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
    from modules.paths_internal import models_path, script_path, data_path, sd_configs_path, sd_default_config, sd_model_file, default_sd_model_file, extensions_dir, extensions_builtin_dir  # noqa: F401
    
    from ldm.models.diffusion.ddpm import LatentDiffusion
    
    from typing import Optional
    
    parser = cmd_args.parser
    
    script_loading.preload_extensions(extensions_dir, parser)
    script_loading.preload_extensions(extensions_builtin_dir, parser)
    
    if os.environ.get('IGNORE_CMD_ARGS_ERRORS', None) is None:
        cmd_opts = parser.parse_args()
    else:
        cmd_opts, _ = parser.parse_known_args()
    
        "directories_filename_pattern",
    
        "outdir_samples",
        "outdir_txt2img_samples",
        "outdir_img2img_samples",
        "outdir_extras_samples",
        "outdir_grids",
        "outdir_txt2img_grids",
        "outdir_save",
    
        "outdir_init_images"
    
    space-nuko's avatar
    space-nuko 已提交
    # https://huggingface.co/datasets/freddyaboulton/gradio-theme-subdomains/resolve/main/subdomains.json
    gradio_hf_hub_themes = [
        "gradio/glass",
        "gradio/monochrome",
        "gradio/seafoam",
        "gradio/soft",
        "freddyaboulton/dracula_revamped",
        "gradio/dracula_test",
        "abidlabs/dracula_test",
        "abidlabs/pakistan",
        "dawood/microsoft_windows",
        "ysharma/steampunk"
    ]
    
    
    
    cmd_opts.disable_extension_access = (cmd_opts.share or cmd_opts.listen or cmd_opts.server_name) and not cmd_opts.enable_insecure_extension_access
    
    devices.device, devices.device_interrogate, devices.device_gfpgan, devices.device_esrgan, devices.device_codeformer = \
        (devices.cpu if any(y in cmd_opts.use_cpu for y in [x, 'all']) else devices.get_optimal_device() for x in ['sd', 'interrogate', 'gfpgan', 'esrgan', 'codeformer'])
    
    
    devices.dtype = torch.float32 if cmd_opts.no_half else torch.float16
    devices.dtype_vae = torch.float32 if cmd_opts.no_half or cmd_opts.no_half_vae else torch.float16
    
    
    device = devices.device
    
    weight_load_location = None if cmd_opts.lowram else "cpu"
    
    batch_cond_uncond = cmd_opts.always_batch_cond_uncond or not (cmd_opts.lowvram or cmd_opts.medvram)
    
    parallel_processing_allowed = not cmd_opts.lowvram and not cmd_opts.medvram
    
    xformers_available = False
    
    config_filename = cmd_opts.ui_settings_file
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
    
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
    os.makedirs(cmd_opts.hypernetwork_dir, exist_ok=True)
    
    hypernetworks = {}
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
    loaded_hypernetworks = []
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
    def reload_hypernetworks():
    
        from modules.hypernetworks import hypernetwork
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
        global hypernetworks
    
        hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
    
    
        skipped = False
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
        job_no = 0
        job_count = 0
    
        processing_has_refined_job_count = False
    
        job_timestamp = '0'
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
        sampling_step = 0
        sampling_steps = 0
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
        current_latent = None
        current_image = None
    
        current_image_sampling_step = 0
    
        time_start = None
    
        server_start = None
    
    anonCantCode's avatar
    anonCantCode 已提交
        _server_command: Optional[str] = None
    
    
        @property
        def need_restart(self) -> bool:
            # Compatibility getter for need_restart.
            return self.server_command == "restart"
    
        @need_restart.setter
        def need_restart(self, value: bool) -> None:
            # Compatibility setter for need_restart.
            if value:
                self.server_command = "restart"
    
        @property
        def server_command(self):
            return self._server_command
    
        @server_command.setter
    
        def server_command(self, value: Optional[str]) -> None:
    
            """
            Set the server command to `value` and signal that it's been set.
            """
            self._server_command = value
            self._server_command_signal.set()
    
    
    anonCantCode's avatar
    anonCantCode 已提交
        def wait_for_server_command(self, timeout: Optional[float] = None) -> Optional[str]:
    
            """
            Wait for server command to get set; return and clear the value and signal.
            """
            if self._server_command_signal.wait(timeout):
                self._server_command_signal.clear()
                req = self._server_command
                self._server_command = None
                return req
            return None
    
        def request_restart(self) -> None:
            self.interrupt()
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
            self.server_command = "restart"
    
        def skip(self):
            self.skipped = True
    
    
        def interrupt(self):
            self.interrupted = True
    
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
        def nextjob(self):
    
            if opts.live_previews_enable and opts.show_progress_every_n_steps == -1:
    
                self.do_set_current_image()
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
            self.job_no += 1
            self.sampling_step = 0
    
            self.current_image_sampling_step = 0
    
    discus0434's avatar
    discus0434 已提交
    
    
        def dict(self):
    
    evshiron's avatar
    evshiron 已提交
            obj = {
                "skipped": self.skipped,
    
                "interrupted": self.interrupted,
    
    evshiron's avatar
    evshiron 已提交
                "job": self.job,
                "job_count": self.job_count,
    
                "job_timestamp": self.job_timestamp,
    
    evshiron's avatar
    evshiron 已提交
                "job_no": self.job_no,
                "sampling_step": self.sampling_step,
                "sampling_steps": self.sampling_steps,
            }
    
    
            return obj
    
    evshiron's avatar
    evshiron 已提交
    
    
        def begin(self):
            self.sampling_step = 0
            self.job_count = -1
    
            self.processing_has_refined_job_count = False
    
            self.job_no = 0
            self.job_timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
            self.current_latent = None
            self.current_image = None
            self.current_image_sampling_step = 0
    
            self.skipped = False
            self.interrupted = False
            self.textinfo = None
    
            self.time_start = time.time()
    
    
            devices.torch_gc()
    
        def end(self):
            self.job = ""
            self.job_count = 0
    
            devices.torch_gc()
    
        def set_current_image(self):
    
            """sets self.current_image from self.current_latent if enough sampling steps have been made after the last call to this"""
    
            if self.sampling_step - self.current_image_sampling_step >= opts.show_progress_every_n_steps and opts.live_previews_enable and opts.show_progress_every_n_steps != -1:
    
                self.do_set_current_image()
    
        def do_set_current_image(self):
            if self.current_latent is None:
                return
    
            import modules.sd_samplers
    
            if opts.show_progress_grid:
    
                self.assign_current_image(modules.sd_samplers.samples_to_image_grid(self.current_latent))
    
                self.assign_current_image(modules.sd_samplers.sample_to_image(self.current_latent))
    
            self.current_image_sampling_step = self.sampling_step
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
    
    
        def assign_current_image(self, image):
            self.current_image = image
            self.id_live_preview += 1
    
    
    state.server_start = time.time()
    
    styles_filename = cmd_opts.styles_file
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
    prompt_styles = modules.styles.StyleDatabase(styles_filename)
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
    interrogator = modules.interrogate.InterrogateModels("interrogate")
    
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
    face_restorers = []
    
        def __init__(self, default=None, label="", component=None, component_args=None, onchange=None, section=None, refresh=None, comment_before='', comment_after=''):
    
            self.default = default
            self.label = label
            self.component = component
            self.component_args = component_args
            self.onchange = onchange
    
            self.section = section
    
            self.refresh = refresh
    
            self.comment_before = comment_before
            """HTML text that will be added after label in UI"""
    
            self.comment_after = comment_after
            """HTML text that will be added before label in UI"""
    
        def link(self, label, url):
            self.comment_before += f"[<a href='{url}' target='_blank'>{label}</a>]"
            return self
    
        def js(self, label, js_func):
            self.comment_before += f"[<a onclick='{js_func}(); return false'>{label}</a>]"
            return self
    
        def info(self, info):
            self.comment_after += f"<span class='info'>({info})</span>"
            return self
    
    
        def html(self, html):
            self.comment_after += html
            return self
    
    
        def needs_restart(self):
            self.comment_after += " <span class='info'>(requires restart)</span>"
            return self
    
    
    
    
    Aidan Holland's avatar
    Aidan Holland 已提交
    def options_section(section_identifier, options_dict):
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
        for v in options_dict.values():
    
    Aidan Holland's avatar
    Aidan Holland 已提交
            v.section = section_identifier
    
    Eyrie's avatar
    Eyrie 已提交
    
    
    def list_checkpoint_tiles():
        import modules.sd_models
        return modules.sd_models.checkpoint_tiles()
    
    
    def refresh_checkpoints():
        import modules.sd_models
        return modules.sd_models.list_models()
    
    
    def list_samplers():
        import modules.sd_samplers
        return modules.sd_samplers.all_samplers
    
    
    
    hide_dirs = {"visible": not cmd_opts.hide_ui_dir_config}
    
    options_templates.update(options_section(('saving-images', "Saving images/grids"), {
        "samples_save": OptionInfo(True, "Always save all generated images"),
        "samples_format": OptionInfo('png', 'File format for images'),
    
        "samples_filename_pattern": OptionInfo("", "Images filename pattern", component_args=hide_dirs).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Images-Filename-Name-and-Subdirectory"),
    
        "save_images_add_number": OptionInfo(True, "Add number to filename when saving", component_args=hide_dirs),
    
    
        "grid_save": OptionInfo(True, "Always save all generated image grids"),
        "grid_format": OptionInfo('png', 'File format for grids'),
        "grid_extended_filename": OptionInfo(False, "Add extended info (seed, prompt) to filename when saving grid"),
        "grid_only_if_multiple": OptionInfo(True, "Do not save grids consisting of one picture"),
    
        "grid_prevent_empty_spots": OptionInfo(False, "Prevent empty spots in grid (when set to autodetect)"),
    
        "grid_zip_filename_pattern": OptionInfo("", "Archive filename pattern", component_args=hide_dirs).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Images-Filename-Name-and-Subdirectory"),
    
        "n_rows": OptionInfo(-1, "Grid row count; use -1 for autodetect and 0 for it to be same as batch size", gr.Slider, {"minimum": -1, "maximum": 16, "step": 1}),
    
    
        "enable_pnginfo": OptionInfo(True, "Save text information about generation parameters as chunks to png files"),
        "save_txt": OptionInfo(False, "Create a text file next to every image with generation parameters."),
        "save_images_before_face_restoration": OptionInfo(False, "Save a copy of image before doing face restoration."),
    
        "save_images_before_highres_fix": OptionInfo(False, "Save a copy of image before applying highres fix."),
    
        "save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"),
    
        "save_mask": OptionInfo(False, "For inpainting, save a copy of the greyscale mask"),
        "save_mask_composite": OptionInfo(False, "For inpainting, save a masked composite"),
    
        "jpeg_quality": OptionInfo(80, "Quality for saved jpeg images", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}),
    
    missionfloyd's avatar
    missionfloyd 已提交
        "webp_lossless": OptionInfo(False, "Use lossless compression for webp images"),
    
        "export_for_4chan": OptionInfo(True, "Save copy of large images as JPG").info("if the file size is above the limit, or either width or height are above the limit"),
    
        "img_downscale_threshold": OptionInfo(4.0, "File size limit for the above option, MB", gr.Number),
        "target_side_length": OptionInfo(4000, "Width/height limit for the above option, in pixels", gr.Number),
    
        "img_max_size_mp": OptionInfo(200, "Maximum image size", gr.Number).info("in megapixels"),
    
        "use_original_name_batch": OptionInfo(True, "Use original name for output filename during batch process in extras tab"),
    
        "use_upscaler_name_as_suffix": OptionInfo(False, "Use upscaler name as filename suffix in the extras tab"),
    
        "save_selected_only": OptionInfo(True, "When using 'Save' button, only save a single selected image"),
    
        "save_init_img": OptionInfo(False, "Save init images when using img2img"),
    
    
        "temp_dir":  OptionInfo("", "Directory for temporary images; leave empty for default"),
        "clean_temp_dir_at_start": OptionInfo(False, "Cleanup non-default temporary directory when starting webui"),
    
    
    options_templates.update(options_section(('saving-paths', "Paths for saving"), {
        "outdir_samples": OptionInfo("", "Output directory for images; if empty, defaults to three directories below", component_args=hide_dirs),
    
        "outdir_txt2img_samples": OptionInfo("outputs/txt2img-images", 'Output directory for txt2img images', component_args=hide_dirs),
        "outdir_img2img_samples": OptionInfo("outputs/img2img-images", 'Output directory for img2img images', component_args=hide_dirs),
        "outdir_extras_samples": OptionInfo("outputs/extras-images", 'Output directory for images from extras tab', component_args=hide_dirs),
        "outdir_grids": OptionInfo("", "Output directory for grids; if empty, defaults to two directories below", component_args=hide_dirs),
        "outdir_txt2img_grids": OptionInfo("outputs/txt2img-grids", 'Output directory for txt2img grids', component_args=hide_dirs),
        "outdir_img2img_grids": OptionInfo("outputs/img2img-grids", 'Output directory for img2img grids', component_args=hide_dirs),
        "outdir_save": OptionInfo("log/images", "Directory for saving images using the Save button", component_args=hide_dirs),
    
        "outdir_init_images": OptionInfo("outputs/init-images", "Directory for saving init images when using img2img", component_args=hide_dirs),
    
    options_templates.update(options_section(('saving-to-dirs', "Saving to a directory"), {
    
        "save_to_dirs": OptionInfo(True, "Save images to a subdirectory"),
        "grid_save_to_dirs": OptionInfo(True, "Save grids to a subdirectory"),
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
        "use_save_to_dirs_for_ui": OptionInfo(False, "When using \"Save\" button, save images to a subdirectory"),
    
        "directories_filename_pattern": OptionInfo("[date]", "Directory name pattern", component_args=hide_dirs).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Images-Filename-Name-and-Subdirectory"),
    
        "directories_max_prompt_words": OptionInfo(8, "Max prompt words for [prompt_words] pattern", gr.Slider, {"minimum": 1, "maximum": 20, "step": 1, **hide_dirs}),
    
    }))
    
    options_templates.update(options_section(('upscaling', "Upscaling"), {
    
        "ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscalers.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}).info("0 = no tiling"),
        "ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap for ESRGAN upscalers.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}).info("Low values = visible seam"),
        "realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI.", gr.CheckboxGroup, lambda: {"choices": shared_items.realesrgan_models_names()}),
    
        "upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in sd_upscalers]}),
    
    }))
    
    options_templates.update(options_section(('face-restoration', "Face restoration"), {
    
        "face_restoration_model": OptionInfo("CodeFormer", "Face restoration model", gr.Radio, lambda: {"choices": [x.name() for x in face_restorers]}),
    
        "code_former_weight": OptionInfo(0.5, "CodeFormer weight", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}).info("0 = maximum effect; 1 = minimum effect"),
    
        "face_restoration_unload": OptionInfo(False, "Move face restoration model from VRAM into RAM after processing"),
    
    options_templates.update(options_section(('system', "System"), {
    
        "show_warnings": OptionInfo(False, "Show warnings in console."),
    
        "memmon_poll_rate": OptionInfo(8, "VRAM usage polls per second during generation.", gr.Slider, {"minimum": 0, "maximum": 40, "step": 1}).info("0 = disable"),
    
        "samples_log_stdout": OptionInfo(False, "Always print all generation info to standard output"),
    
        "multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job."),
    
        "print_hypernet_extra": OptionInfo(False, "Print extra hypernetwork information to console."),
    
        "list_hidden_files": OptionInfo(True, "Load models/files in hidden directories").info("directory is hidden if its name starts with \".\""),
    
    options_templates.update(options_section(('training', "Training"), {
    
    Fampai's avatar
    Fampai 已提交
        "unload_models_when_training": OptionInfo(False, "Move VAE and CLIP to RAM when training if possible. Saves VRAM."),
    
        "pin_memory": OptionInfo(False, "Turn on pin_memory for DataLoader. Makes training slightly faster but can increase memory usage."),
    
        "save_optimizer_state": OptionInfo(False, "Saves Optimizer state as separate *.optim file. Training of embedding or HN can be resumed with the matching optim file."),
    
        "save_training_settings_to_txt": OptionInfo(True, "Save textual inversion and hypernet settings to a text file whenever training starts."),
    
        "dataset_filename_word_regex": OptionInfo("", "Filename word regex"),
        "dataset_filename_join_string": OptionInfo(" ", "Filename join string"),
    
        "training_image_repeats_per_epoch": OptionInfo(1, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}),
        "training_write_csv_every": OptionInfo(500, "Save an csv containing the loss to log directory every N steps, 0 to disable"),
    
    Fampai's avatar
    Fampai 已提交
        "training_xattention_optimizations": OptionInfo(False, "Use cross attention optimizations while training"),
    
        "training_enable_tensorboard": OptionInfo(False, "Enable tensorboard logging."),
        "training_tensorboard_save_images": OptionInfo(False, "Save generated images within tensorboard."),
        "training_tensorboard_flush_every": OptionInfo(120, "How often, in seconds, to flush the pending tensorboard events and summaries to disk."),
    
    options_templates.update(options_section(('sd', "Stable Diffusion"), {
    
        "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": list_checkpoint_tiles()}, refresh=refresh_checkpoints),
    
        "sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
    
        "sd_vae_checkpoint_cache": OptionInfo(0, "VAE Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
    
        "sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": shared_items.sd_vae_items()}, refresh=shared_items.refresh_vae_list).info("choose VAE model: Automatic = use one with same filename as checkpoint; None = use VAE from checkpoint"),
    
        "sd_vae_as_default": OptionInfo(True, "Ignore selected VAE for stable diffusion checkpoints that have their own .vae.pt next to them"),
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
        "sd_unet": OptionInfo("Automatic", "SD Unet", gr.Dropdown, lambda: {"choices": shared_items.sd_unet_items()}, refresh=shared_items.refresh_unet_list).info("choose Unet model: Automatic = use one with same filename as checkpoint; None = use Unet from checkpoint"),
    
        "inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
    
        "initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for img2img", gr.Slider, {"minimum": 0.5, "maximum": 1.5, "step": 0.01}),
    
        "img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
    
        "img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies.").info("normally you'd do less with less denoising"),
    
        "img2img_background_color": OptionInfo("#ffffff", "With img2img, fill image's transparent parts with this color.", ui_components.FormColorPicker, {}),
    
        "enable_quantization": OptionInfo(False, "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply."),
    
        "enable_emphasis": OptionInfo(True, "Enable emphasis").info("use (text) to make model pay more attention to text and [text] to make it pay less attention"),
    
        "enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"),
    
        "comma_padding_backtrack": OptionInfo(20, "Prompt word wrap length limit", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1}).info("in tokens - for texts shorter than specified, if they don't fit into 75 token limit, move them to the next 75 token chunk"),
        "CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#clip-skip").info("ignore last layers of CLIP nrtwork; 1 ignores none, 2 ignores one layer"),
    
        "upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"),
    
    yoinked's avatar
    yoinked 已提交
        "randn_source": OptionInfo("GPU", "Random number generator source.", gr.Radio, {"choices": ["GPU", "CPU"]}).info("changes seeds drastically; use CPU to produce the same picture across different videocard vendors"),
    
    }))
    
    options_templates.update(options_section(('optimizations', "Optimizations"), {
    
        "cross_attention_optimization": OptionInfo("Automatic", "Cross attention optimization", gr.Dropdown, lambda: {"choices": shared_items.cross_attention_optimizations()}),
    
        "s_min_uncond": OptionInfo(0.0, "Negative Guidance minimum sigma", gr.Slider, {"minimum": 0.0, "maximum": 4.0, "step": 0.01}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9177").info("skip negative prompt for some steps when the image is almost ready; 0=disable, higher=faster"),
    
        "token_merging_ratio": OptionInfo(0.0, "Token merging ratio", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9256").info("0=disable, higher=faster"),
    
        "token_merging_ratio_img2img": OptionInfo(0.0, "Token merging ratio for img2img", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"),
        "token_merging_ratio_hr": OptionInfo(0.0, "Token merging ratio for high-res pass", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"),
    
        "pad_cond_uncond": OptionInfo(False, "Pad prompt/negative prompt to be same length").info("improves performance when prompt and negative prompt have different lengths; changes seeds"),
    
    options_templates.update(options_section(('compatibility', "Compatibility"), {
        "use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."),
        "use_old_karras_scheduler_sigmas": OptionInfo(False, "Use old karras scheduler sigmas (0.1 to 10)."),
    
        "no_dpmpp_sde_batch_determinism": OptionInfo(False, "Do not make DPM++ SDE deterministic across different batch sizes."),
    
        "use_old_hires_fix_width_height": OptionInfo(False, "For hires fix, use width/height sliders to set final resolution rather than first pass (disables Upscale by, Resize width/height to)."),
    
    catboxanon's avatar
    catboxanon 已提交
        "dont_fix_second_order_samplers_schedule": OptionInfo(False, "Do not fix prompt schedule for second order samplers."),
    
        "hires_fix_use_firstpass_conds": OptionInfo(False, "For hires fix, calculate conds of second pass using extra networks of first pass."),
    
    options_templates.update(options_section(('interrogate', "Interrogate Options"), {
    
        "interrogate_keep_models_in_memory": OptionInfo(False, "Keep models in VRAM"),
        "interrogate_return_ranks": OptionInfo(False, "Include ranks of model tags matches in results.").info("booru only"),
        "interrogate_clip_num_beams": OptionInfo(1, "BLIP: num_beams", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}),
        "interrogate_clip_min_length": OptionInfo(24, "BLIP: minimum description length", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}),
        "interrogate_clip_max_length": OptionInfo(48, "BLIP: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}),
        "interrogate_clip_dict_limit": OptionInfo(1500, "CLIP: maximum number of lines in text file").info("0 = No limit"),
    
        "interrogate_clip_skip_categories": OptionInfo([], "CLIP: skip inquire categories", gr.CheckboxGroup, lambda: {"choices": modules.interrogate.category_types()}, refresh=modules.interrogate.category_types),
    
        "interrogate_deepbooru_score_threshold": OptionInfo(0.5, "deepbooru: score threshold", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}),
        "deepbooru_sort_alpha": OptionInfo(True, "deepbooru: sort tags alphabetically").info("if not: sort by score"),
        "deepbooru_use_spaces": OptionInfo(True, "deepbooru: use spaces in tags").info("if not: use underscores"),
        "deepbooru_escape": OptionInfo(True, "deepbooru: escape (\\) brackets").info("so they are used as literal brackets and not for emphasis"),
        "deepbooru_filter_tags": OptionInfo("", "deepbooru: filter out those tags").info("separate by comma"),
    
    options_templates.update(options_section(('extra_networks', "Extra Networks"), {
    
        "extra_networks_show_hidden_directories": OptionInfo(True, "Show hidden directories").info("directory is hidden if its name starts with \".\"."),
        "extra_networks_hidden_models": OptionInfo("When searched", "Show cards for models in hidden directories", gr.Radio, {"choices": ["Always", "When searched", "Never"]}).info('"When searched" option will only show the item when the search string has 4 characters or more'),
    
        "extra_networks_default_view": OptionInfo("cards", "Default view for Extra Networks", gr.Dropdown, {"choices": ["cards", "thumbs"]}),
        "extra_networks_default_multiplier": OptionInfo(1.0, "Multiplier for extra networks", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
    
        "extra_networks_card_width": OptionInfo(0, "Card width for Extra Networks").info("in pixels"),
        "extra_networks_card_height": OptionInfo(0, "Card height for Extra Networks").info("in pixels"),
        "extra_networks_add_text_separator": OptionInfo(" ", "Extra networks separator").info("extra text to add before <...> when adding extra network to prompt"),
    
        "ui_extra_networks_tab_reorder": OptionInfo("", "Extra networks tab order").needs_restart(),
    
        "sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": ["None", *hypernetworks]}, refresh=reload_hypernetworks),
    
    options_templates.update(options_section(('ui', "User interface"), {
    
        "localization": OptionInfo("None", "Localization", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)).needs_restart(),
        "gradio_theme": OptionInfo("Default", "Gradio theme", ui_components.DropdownEditable, lambda: {"choices": ["Default"] + gradio_hf_hub_themes}).needs_restart(),
    
        "img2img_editor_height": OptionInfo(720, "img2img: height of image editor", gr.Slider, {"minimum": 80, "maximum": 1600, "step": 1}).info("in pixels").needs_restart(),
    
        "return_grid": OptionInfo(True, "Show grid in results for web"),
    
        "return_mask": OptionInfo(False, "For inpainting, include the greyscale mask in results for web"),
        "return_mask_composite": OptionInfo(False, "For inpainting, include masked composite in results for web"),
    
        "do_not_show_images": OptionInfo(False, "Do not show any images in results for web"),
    
        "send_seed": OptionInfo(True, "Send seed when sending prompt or image to other interface"),
    
        "send_size": OptionInfo(True, "Send size when sending prompt or image to another interface"),
    
        "font": OptionInfo("", "Font for image grids that have text"),
        "js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"),
    
    Aidan Holland's avatar
    Aidan Holland 已提交
        "js_modal_lightbox_initially_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"),
    
        "js_modal_lightbox_gamepad": OptionInfo(False, "Navigate image viewer with gamepad"),
    
    missionfloyd's avatar
    missionfloyd 已提交
        "js_modal_lightbox_gamepad_repeat": OptionInfo(250, "Gamepad repeat period, in milliseconds"),
    
        "show_progress_in_title": OptionInfo(True, "Show generation progress in window title."),
    
        "samplers_in_dropdown": OptionInfo(True, "Use dropdown for sampler selection instead of radio group").needs_restart(),
        "dimensions_and_batch_together": OptionInfo(True, "Show Width/Height and Batch sliders in same row").needs_restart(),
    
        "keyedit_precision_attention": OptionInfo(0.1, "Ctrl+up/down precision when editing (attention:1.1)", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
        "keyedit_precision_extra": OptionInfo(0.05, "Ctrl+up/down precision when editing <extra networks:0.9>", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
    
        "keyedit_delimiters": OptionInfo(".,\\/!?%^*;:{}=`~()", "Ctrl+up/down word delimiters"),
    
        "quicksettings_list": OptionInfo(["sd_model_checkpoint"], "Quicksettings list", ui_components.DropdownMulti, lambda: {"choices": list(opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings").info("setting entries that appear at the top of page rather than in settings tab").needs_restart(),
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
        "ui_tab_order": OptionInfo([], "UI tab order", ui_components.DropdownMulti, lambda: {"choices": list(tab_names)}).needs_restart(),
    
        "hidden_tabs": OptionInfo([], "Hidden UI tabs", ui_components.DropdownMulti, lambda: {"choices": list(tab_names)}).needs_restart(),
    
        "ui_reorder_list": OptionInfo([], "txt2img/img2img UI item order", ui_components.DropdownMulti, lambda: {"choices": list(shared_items.ui_reorder_categories())}).info("selected items appear first").needs_restart(),
    
        "hires_fix_show_sampler": OptionInfo(False, "Hires fix: show hires sampler selection").needs_restart(),
        "hires_fix_show_prompts": OptionInfo(False, "Hires fix: show hires prompt and negative prompt").needs_restart(),
    
        "disable_token_counters": OptionInfo(False, "Disable prompt token counters").needs_restart(),
    
    options_templates.update(options_section(('infotext', "Infotext"), {
        "add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"),
        "add_model_name_to_info": OptionInfo(True, "Add model name to generation information"),
        "add_version_to_infotext": OptionInfo(True, "Add program version to generation information"),
    
        "disable_weights_auto_swap": OptionInfo(True, "Disregard checkpoint information from pasted infotext").info("when reading generation parameters from text into UI"),
        "infotext_styles": OptionInfo("Apply if any", "Infer styles from prompts of pasted infotext", gr.Radio, {"choices": ["Ignore", "Apply", "Discard", "Apply if any"]}).info("when reading generation parameters from text into UI)").html("""<ul style='margin-left: 1.5em'>
    <li>Ignore: keep prompt and styles dropdown as it is.</li>
    <li>Apply: remove style text from prompt, always replace styles dropdown value with found styles (even if none are found).</li>
    <li>Discard: remove style text from prompt, keep styles dropdown as it is.</li>
    <li>Apply if any: remove style text from prompt; if any styles are found in prompt, put them into styles dropdown, otherwise keep it as it is.</li>
    </ul>"""),
    
    
    options_templates.update(options_section(('ui', "Live previews"), {
    
        "show_progressbar": OptionInfo(True, "Show progressbar"),
    
        "live_previews_enable": OptionInfo(True, "Show live previews of the created image"),
    
        "live_previews_image_format": OptionInfo("png", "Live preview file format", gr.Radio, {"choices": ["jpeg", "png", "webp"]}),
    
        "show_progress_grid": OptionInfo(True, "Show previews of all images generated in a batch as a grid"),
    
        "show_progress_every_n_steps": OptionInfo(10, "Live preview display period", gr.Slider, {"minimum": -1, "maximum": 32, "step": 1}).info("in sampling steps - show new live preview image every N sampling steps; -1 = only show after completion of batch"),
    
        "show_progress_type": OptionInfo("Approx NN", "Live preview method", gr.Radio, {"choices": ["Full", "Approx NN", "Approx cheap", "TAESD"]}).info("Full = slow but pretty; Approx NN and TAESD = fast but low quality; Approx cheap = super fast but terrible otherwise"),
    
        "live_preview_content": OptionInfo("Prompt", "Live preview subject", gr.Radio, {"choices": ["Combined", "Prompt", "Negative prompt"]}),
    
        "live_preview_refresh_period": OptionInfo(1000, "Progressbar and preview update period").info("in milliseconds"),
    
    options_templates.update(options_section(('sampler-params', "Sampler parameters"), {
    
        "hide_samplers": OptionInfo([], "Hide samplers in user interface", gr.CheckboxGroup, lambda: {"choices": [x.name for x in list_samplers()]}).needs_restart(),
        "eta_ddim": OptionInfo(0.0, "Eta for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}).info("noise multiplier; higher = more unperdictable results"),
        "eta_ancestral": OptionInfo(1.0, "Eta for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}).info("noise multiplier; applies to Euler a and other samplers that have a in them"),
    
        "ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}),
        's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
        's_tmin':  OptionInfo(0.0, "sigma tmin",  gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
        's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
    
        'k_sched_type':  OptionInfo("Automatic", "scheduler type", gr.Dropdown, {"choices": ["Automatic", "karras", "exponential", "polyexponential"]}).info("lets you override the noise schedule for k-diffusion samplers; choosing Automatic disables the three parameters below"),
        'sigma_min': OptionInfo(0.0, "sigma min", gr.Number).info("0 = default (~0.03); minimum noise strength for k-diffusion noise scheduler"),
        'sigma_max': OptionInfo(0.0, "sigma max", gr.Number).info("0 = default (~14.6); maximum noise strength for k-diffusion noise schedule"),
        'rho':  OptionInfo(0.0, "rho", gr.Number).info("0 = default (7 for karras, 1 for polyexponential); higher values result in a more steep noise schedule (decreases faster)"),
    
        'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}).info("ENSD; does not improve anything, just produces different results for ancestral samplers - only useful for reproducing images"),
        'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma").link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/6044"),
    
    space-nuko's avatar
    space-nuko 已提交
        'uni_pc_variant': OptionInfo("bh1", "UniPC variant", gr.Radio, {"choices": ["bh1", "bh2", "vary_coeff"]}),
    
    space-nuko's avatar
    space-nuko 已提交
        'uni_pc_skip_type': OptionInfo("time_uniform", "UniPC skip type", gr.Radio, {"choices": ["time_uniform", "time_quadratic", "logSNR"]}),
    
        'uni_pc_order': OptionInfo(3, "UniPC order", gr.Slider, {"minimum": 1, "maximum": 50, "step": 1}).info("must be < sampling steps"),
    
    space-nuko's avatar
    space-nuko 已提交
        'uni_pc_lower_order_final': OptionInfo(True, "UniPC lower order final"),
    
    options_templates.update(options_section(('postprocessing', "Postprocessing"), {
    
        'postprocessing_enable_in_main_ui': OptionInfo([], "Enable postprocessing operations in txt2img and img2img tabs", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}),
        'postprocessing_operation_order': OptionInfo([], "Postprocessing operation order", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}),
    
        'upscaling_max_images_in_cache': OptionInfo(5, "Maximum number of images in upscaling cache", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
    }))
    
    
    options_templates.update(options_section((None, "Hidden options"), {
    
        "disabled_extensions": OptionInfo([], "Disable these extensions"),
    
        "disable_all_extensions": OptionInfo("none", "Disable all extensions (preserves the list of disabled extensions)", gr.Radio, {"choices": ["none", "extra", "all"]}),
    
        "restore_config_state_file": OptionInfo("", "Config state file to restore from, under 'config-states/' folder"),
    
        "sd_checkpoint_hash": OptionInfo("", "SHA256 hash of the current checkpoint"),
    
    options_templates.update()
    
    
        data_labels = options_templates
    
        typemap = {int: float}
    
    
        def __init__(self):
            self.data = {k: v.default for k, v in self.data_labels.items()}
    
        def __setattr__(self, key, value):
            if self.data is not None:
    
                if key in self.data or key in self.data_labels:
    
                    assert not cmd_opts.freeze_settings, "changing settings is disabled"
    
    
                    info = opts.data_labels.get(key, None)
                    comp_args = info.component_args if info else None
    
                    if isinstance(comp_args, dict) and comp_args.get('visible', True) is False:
                        raise RuntimeError(f"not possible to set {key} because it is restricted")
    
                    if cmd_opts.hide_ui_dir_config and key in restricted_opts:
                        raise RuntimeError(f"not possible to set {key} because it is restricted")
    
    
    
            return super(Options, self).__setattr__(key, value)
    
        def __getattr__(self, item):
            if self.data is not None:
                if item in self.data:
                    return self.data[item]
    
            if item in self.data_labels:
                return self.data_labels[item].default
    
            return super(Options, self).__getattribute__(item)
    
    
        def set(self, key, value):
            """sets an option and calls its onchange callback, returning True if the option changed and False otherwise"""
    
            oldval = self.data.get(key, None)
            if oldval == value:
                return False
    
            try:
                setattr(self, key, value)
            except RuntimeError:
                return False
    
            if self.data_labels[key].onchange is not None:
    
                try:
                    self.data_labels[key].onchange()
                except Exception as e:
                    errors.display(e, f"changing setting {key} to {value}")
                    setattr(self, key, oldval)
                    return False
    
        def get_default(self, key):
            """returns the default value for the key"""
    
            data_label = self.data_labels.get(key)
            if data_label is None:
                return None
    
            return data_label.default
    
    
            assert not cmd_opts.freeze_settings, "saving settings is disabled"
    
    
            with open(filename, "w", encoding="utf8") as file:
    
    w-e-w's avatar
    w-e-w 已提交
                json.dump(self.data, file, indent=4)
    
        def same_type(self, x, y):
            if x is None or y is None:
                return True
    
            type_x = self.typemap.get(type(x), type(x))
            type_y = self.typemap.get(type(y), type(y))
    
            return type_x == type_y
    
        def load(self, filename):
            with open(filename, "r", encoding="utf8") as file:
                self.data = json.load(file)
    
            # 1.1.1 quicksettings list migration
            if self.data.get('quicksettings') is not None and self.data.get('quicksettings_list') is None:
                self.data['quicksettings_list'] = [i.strip() for i in self.data.get('quicksettings').split(',')]
    
    
            # 1.4.0 ui_reorder
    
            if isinstance(self.data.get('ui_reorder'), str) and self.data.get('ui_reorder') and "ui_reorder_list" not in self.data:
                self.data['ui_reorder_list'] = [i.strip() for i in self.data.get('ui_reorder').split(',')]
    
            bad_settings = 0
            for k, v in self.data.items():
                info = self.data_labels.get(k, None)
    
                if info is not None and not self.same_type(info.default, v):
    
                    print(f"Warning: bad setting value: {k}: {v} ({type(v).__name__}; expected {type(info.default).__name__})", file=sys.stderr)
                    bad_settings += 1
    
            if bad_settings > 0:
                print(f"The program is likely to not work with bad settings.\nSettings file: {filename}\nEither fix the file, or delete it and restart.", file=sys.stderr)
    
    
        def onchange(self, key, func, call=True):
    
            item = self.data_labels.get(key)
            item.onchange = func
    
    
            if call:
                func()
    
        def dumpjson(self):
    
            d = {k: self.data.get(k, v.default) for k, v in self.data_labels.items()}
            d["_comments_before"] = {k: v.comment_before for k, v in self.data_labels.items() if v.comment_before is not None}
            d["_comments_after"] = {k: v.comment_after for k, v in self.data_labels.items() if v.comment_after is not None}
    
            return json.dumps(d)
    
    
        def add_option(self, key, info):
            self.data_labels[key] = info
    
        def reorder(self):
            """reorder settings so that all items related to section always go together"""
    
            section_ids = {}
            settings_items = self.data_labels.items()
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
            for _, item in settings_items:
    
                if item.section not in section_ids:
                    section_ids[item.section] = len(section_ids)
    
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
            self.data_labels = dict(sorted(settings_items, key=lambda x: section_ids[x[1].section]))
    
        def cast_value(self, key, value):
            """casts an arbitrary to the same type as this setting's value with key
            Example: cast_value("eta_noise_seed_delta", "12") -> returns 12 (an int rather than str)
            """
    
            if value is None:
                return None
    
            default_value = self.data_labels[key].default
            if default_value is None:
                default_value = getattr(self, key, None)
            if default_value is None:
                return None
    
            expected_type = type(default_value)
            if expected_type == bool and value == "False":
                value = False
            else:
                value = expected_type(value)
    
            return value
    
    
    
    opts = Options()
    if os.path.exists(config_filename):
        opts.load(config_filename)
    
    
    
    class Shared(sys.modules[__name__].__class__):
        """
        this class is here to provide sd_model field as a property, so that it can be created and loaded on demand rather than
        at program startup.
        """
    
        sd_model_val = None
    
        @property
        def sd_model(self):
            import modules.sd_models
    
            return modules.sd_models.model_data.get_sd_model()
    
        @sd_model.setter
        def sd_model(self, value):
            import modules.sd_models
    
            modules.sd_models.model_data.set_sd_model(value)
    
    
    sd_model: LatentDiffusion = None  # this var is here just for IDE's type checking; it cannot be accessed because the class field above will be accessed instead
    sys.modules[__name__].__class__ = Shared
    
    
    """assinged from ui.py, a mapping on setting names to gradio components repsponsible for those settings"""
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
    latent_upscale_default_mode = "Latent"
    latent_upscale_modes = {
    
    MMaker's avatar
    MMaker 已提交
        "Latent": {"mode": "bilinear", "antialias": False},
        "Latent (antialiased)": {"mode": "bilinear", "antialias": True},
        "Latent (bicubic)": {"mode": "bicubic", "antialias": False},
    
        "Latent (bicubic antialiased)": {"mode": "bicubic", "antialias": True},
    
    MMaker's avatar
    MMaker 已提交
        "Latent (nearest)": {"mode": "nearest", "antialias": False},
    
        "Latent (nearest-exact)": {"mode": "nearest-exact", "antialias": False},
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
    }
    
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
    sd_upscalers = []
    
    clip_model = None
    
    progress_print_out = sys.stdout
    
    space-nuko's avatar
    space-nuko 已提交
    gradio_theme = gr.themes.Base()
    
    
    def reload_gradio_theme(theme_name=None):
        global gradio_theme
        if not theme_name:
            theme_name = opts.gradio_theme
    
    
    catboxanon's avatar
    catboxanon 已提交
        default_theme_args = dict(
            font=["Source Sans Pro", 'ui-sans-serif', 'system-ui', 'sans-serif'],
            font_mono=['IBM Plex Mono', 'ui-monospace', 'Consolas', 'monospace'],
        )
    
    
    space-nuko's avatar
    space-nuko 已提交
        if theme_name == "Default":
    
    catboxanon's avatar
    catboxanon 已提交
            gradio_theme = gr.themes.Default(**default_theme_args)
    
    space-nuko's avatar
    space-nuko 已提交
        else:
            try:
                gradio_theme = gr.themes.ThemeClass.from_hub(theme_name)
    
            except Exception as e:
                errors.display(e, "changing gradio theme")
    
    catboxanon's avatar
    catboxanon 已提交
                gradio_theme = gr.themes.Default(**default_theme_args)
    
    
    class TotalTQDM:
        def __init__(self):
            self._tqdm = None
    
        def reset(self):
            self._tqdm = tqdm.tqdm(
                desc="Total progress",
                total=state.job_count * state.sampling_steps,
                position=1,
                file=progress_print_out
            )
    
        def update(self):
    
            if not opts.multiple_tqdm or cmd_opts.disable_console_progressbars:
    
                return
            if self._tqdm is None:
                self.reset()
            self._tqdm.update()
    
    
            if not opts.multiple_tqdm or cmd_opts.disable_console_progressbars:
    
        def clear(self):
            if self._tqdm is not None:
    
                self._tqdm.refresh()
    
                self._tqdm.close()
                self._tqdm = None
    
    
    total_tqdm = TotalTQDM()
    
    EyeDeck's avatar
    EyeDeck 已提交
    
    mem_mon = modules.memmon.MemUsageMonitor("MemMon", device, opts)
    mem_mon.start()
    
        filenames = [os.path.join(dirname, x) for x in sorted(os.listdir(dirname), key=str.lower) if not x.startswith(".")]
    
        return [file for file in filenames if os.path.isfile(file)]
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
    
    
    def html_path(filename):
        return os.path.join(script_path, "html", filename)
    
    
    def html(filename):
        path = html_path(filename)
    
        if os.path.exists(path):
            with open(path, encoding="utf8") as file:
                return file.read()
    
        return ""
    
    
    
    def walk_files(path, allowed_extensions=None):
        if not os.path.exists(path):
            return
    
        if allowed_extensions is not None:
            allowed_extensions = set(allowed_extensions)
    
    
    catboxanon's avatar
    catboxanon 已提交
        for root, _, files in os.walk(path, followlinks=True):
    
            for filename in files:
                if allowed_extensions is not None:
                    _, ext = os.path.splitext(filename)
                    if ext not in allowed_extensions:
                        continue
    
    
                if not opts.list_hidden_files and ("/." in root or "\\." in root):
                    continue
    
    
    
    
    def restart_program():
        """creates file tmp/restart and immediately stops the process, which webui.bat/webui.sh interpret as a command to start webui again"""
    
        with open(os.path.join(script_path, "tmp", "restart"), "w"):
            pass
    
        os._exit(0)