Skip to content
代码片段 群组 项目
shared.py 19.4 KB
更新 更旧
import argparse
import json
import os
import gradio as gr
import tqdm
Eyrie's avatar
Eyrie 已提交
import datetime
AUTOMATIC's avatar
AUTOMATIC 已提交
import modules.artists
from modules.paths import script_path, sd_path
from modules.devices import get_optimal_device
AUTOMATIC's avatar
AUTOMATIC 已提交
import modules.styles
AUTOMATIC's avatar
AUTOMATIC 已提交
import modules.interrogate
EyeDeck's avatar
EyeDeck 已提交
import modules.memmon
import modules.sd_models

sd_model_file = os.path.join(script_path, 'model.ckpt')
default_sd_model_file = sd_model_file

parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default=os.path.join(sd_path, "configs/stable-diffusion/v1-inference.yaml"), help="path to config which constructs model",)
parser.add_argument("--ckpt", type=str, default=sd_model_file, help="path to checkpoint of stable diffusion model; this checkpoint will be added to the list of checkpoints and loaded by default if you don't have a checkpoint selected in settings",)
parser.add_argument("--ckpt-dir", type=str, default=os.path.join(script_path, 'models'), help="path to directory with stable diffusion checkpoints",)
parser.add_argument("--gfpgan-dir", type=str, help="GFPGAN directory", default=('./src/gfpgan' if os.path.exists('./src/gfpgan') else './GFPGAN'))
parser.add_argument("--gfpgan-model", type=str, help="GFPGAN model file name", default=None)
parser.add_argument("--no-half", action='store_true', help="do not switch the model to 16-bit floats")
parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)")
parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
parser.add_argument("--embeddings-dir", type=str, default=os.path.join(script_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)")
parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui")
orionaskatu's avatar
orionaskatu 已提交
parser.add_argument("--medvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a little speed for low VRM usage")
parser.add_argument("--lowvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a lot of speed for very low VRM usage")
parser.add_argument("--always-batch-cond-uncond", action='store_true', help="disables cond/uncond batching that is enabled to save memory with --medvram or --lowvram")
parser.add_argument("--unload-gfpgan", action='store_true', help="does not do anything.")
parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast")
parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site (doesn't work for me but you might have better luck)")
AUTOMATIC's avatar
AUTOMATIC 已提交
parser.add_argument("--esrgan-models-path", type=str, help="path to directory with ESRGAN models", default=os.path.join(script_path, 'ESRGAN'))
C43H66N12O12S2's avatar
C43H66N12O12S2 已提交
parser.add_argument("--swinir-models-path", type=str, help="path to directory with SwinIR models", default=os.path.join(script_path, 'SwinIR'))
parser.add_argument("--opt-split-attention", action='store_true', help="force-enables cross-attention layer optimization. By default, it's on for torch.cuda and off for other torch devices.")
parser.add_argument("--disable-opt-split-attention", action='store_true', help="force-disables cross-attention layer optimization")
berkybear's avatar
berkybear 已提交
parser.add_argument("--opt-split-attention-v1", action='store_true', help="enable older version of split attention optimization that does not consume all the VRAM it can find")
parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests")
orionaskatu's avatar
orionaskatu 已提交
parser.add_argument("--port", type=int, help="launch gradio with given server port, you need root/admin rights for ports < 1024, defaults to 7860 if available", default=None)
parser.add_argument("--show-negative-prompt", action='store_true', help="does not do anything", default=False)
parser.add_argument("--ui-config-file", type=str, help="filename to use for ui configuration", default=os.path.join(script_path, 'ui-config.json'))
parser.add_argument("--hide-ui-dir-config", action='store_true', help="hide directory configuration from webui", default=False)
parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui settings", default=os.path.join(script_path, 'config.json'))
parser.add_argument("--gradio-debug",  action='store_true', help="launch gradio with --debug option")
parser.add_argument("--gradio-auth", type=str, help='set gradio authentication like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None)
parser.add_argument("--opt-channelslast", action='store_true', help="change memory type for stable diffusion to channels last")
parser.add_argument("--styles-file", type=str, help="filename to use for styles", default=os.path.join(script_path, 'styles.csv'))
parser.add_argument("--autolaunch", action='store_true', help="open the webui URL in the system's default browser upon launch", default=False)
parser.add_argument("--use-textbox-seed", action='store_true', help="use textbox for seeds in UI (no up/down, but possible to input long seeds)", default=False)

AUTOMATIC's avatar
AUTOMATIC 已提交
cmd_opts = parser.parse_args()
device = get_optimal_device()

batch_cond_uncond = cmd_opts.always_batch_cond_uncond or not (cmd_opts.lowvram or cmd_opts.medvram)
parallel_processing_allowed = not cmd_opts.lowvram and not cmd_opts.medvram
AUTOMATIC's avatar
AUTOMATIC 已提交

config_filename = cmd_opts.ui_settings_file
AUTOMATIC's avatar
AUTOMATIC 已提交

AUTOMATIC's avatar
AUTOMATIC 已提交
    job_no = 0
    job_count = 0
    job_timestamp = '0'
AUTOMATIC's avatar
AUTOMATIC 已提交
    sampling_step = 0
    sampling_steps = 0
AUTOMATIC's avatar
AUTOMATIC 已提交
    current_latent = None
    current_image = None
    current_image_sampling_step = 0

    def interrupt(self):
        self.interrupted = True

AUTOMATIC's avatar
AUTOMATIC 已提交
    def nextjob(self):
        self.job_no += 1
        self.sampling_step = 0
        self.current_image_sampling_step = 0
Eyrie's avatar
Eyrie 已提交
    def get_job_timestamp(self):
        return datetime.datetime.now().strftime("%Y%m%d%H%M%S")
AUTOMATIC's avatar
AUTOMATIC 已提交

AUTOMATIC's avatar
AUTOMATIC 已提交
artist_db = modules.artists.ArtistsDatabase(os.path.join(script_path, 'artists.csv'))

styles_filename = cmd_opts.styles_file
AUTOMATIC's avatar
AUTOMATIC 已提交
prompt_styles = modules.styles.StyleDatabase(styles_filename)
AUTOMATIC's avatar
AUTOMATIC 已提交
interrogator = modules.interrogate.InterrogateModels("interrogate")

AUTOMATIC's avatar
AUTOMATIC 已提交
face_restorers = []
modules.sd_models.list_models()


AUTOMATIC's avatar
AUTOMATIC 已提交
def realesrgan_models_names():
    import modules.realesrgan_model
    return [x.name for x in modules.realesrgan_model.get_realesrgan_models()]


class OptionInfo:
    def __init__(self, default=None, label="", component=None, component_args=None, onchange=None):
        self.default = default
        self.label = label
        self.component = component
        self.component_args = component_args
        self.onchange = onchange


def options_section(section_identifer, options_dict):
    for k, v in options_dict.items():
        v.section = section_identifer

    return options_dict

Eyrie's avatar
Eyrie 已提交

hide_dirs = {"visible": not cmd_opts.hide_ui_dir_config}
options_templates.update(options_section(('saving-images', "Saving images/grids"), {
    "samples_save": OptionInfo(True, "Always save all generated images"),
    "samples_format": OptionInfo('png', 'File format for images'),
    "samples_filename_pattern": OptionInfo("", "Images filename pattern"),

    "grid_save": OptionInfo(True, "Always save all generated image grids"),
    "grid_format": OptionInfo('png', 'File format for grids'),
    "grid_extended_filename": OptionInfo(False, "Add extended info (seed, prompt) to filename when saving grid"),
    "grid_only_if_multiple": OptionInfo(True, "Do not save grids consisting of one picture"),
    "n_rows": OptionInfo(-1, "Grid row count; use -1 for autodetect and 0 for it to be same as batch size", gr.Slider, {"minimum": -1, "maximum": 16, "step": 1}),

    "enable_pnginfo": OptionInfo(True, "Save text information about generation parameters as chunks to png files"),
    "save_txt": OptionInfo(False, "Create a text file next to every image with generation parameters."),
    "save_images_before_face_restoration": OptionInfo(False, "Save a copy of image before doing face restoration."),
    "jpeg_quality": OptionInfo(80, "Quality for saved jpeg images", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}),
    "export_for_4chan": OptionInfo(True, "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG"),

    "use_original_name_batch": OptionInfo(False, "Use original name for output filename during batch process in extras tab"),
options_templates.update(options_section(('saving-paths', "Paths for saving"), {
    "outdir_samples": OptionInfo("", "Output directory for images; if empty, defaults to three directories below", component_args=hide_dirs),
    "outdir_txt2img_samples": OptionInfo("outputs/txt2img-images", 'Output directory for txt2img images', component_args=hide_dirs),
    "outdir_img2img_samples": OptionInfo("outputs/img2img-images", 'Output directory for img2img images', component_args=hide_dirs),
    "outdir_extras_samples": OptionInfo("outputs/extras-images", 'Output directory for images from extras tab', component_args=hide_dirs),
    "outdir_grids": OptionInfo("", "Output directory for grids; if empty, defaults to two directories below", component_args=hide_dirs),
    "outdir_txt2img_grids": OptionInfo("outputs/txt2img-grids", 'Output directory for txt2img grids', component_args=hide_dirs),
    "outdir_img2img_grids": OptionInfo("outputs/img2img-grids", 'Output directory for img2img grids', component_args=hide_dirs),
    "outdir_save": OptionInfo("log/images", "Directory for saving images using the Save button", component_args=hide_dirs),
}))

options_templates.update(options_section(('saving-to-dirs', "Saving to a directory"), {
    "save_to_dirs": OptionInfo(False, "Save images to a subdirectory"),
    "grid_save_to_dirs": OptionInfo(False, "Save grids to subdirectory"),
    "directories_filename_pattern": OptionInfo("", "Directory name pattern"),
    "directories_max_prompt_words": OptionInfo(8, "Max prompt words", gr.Slider, {"minimum": 1, "maximum": 20, "step": 1}),
}))

options_templates.update(options_section(('upscaling', "Upscaling"), {
    "ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscalers. 0 = no tiling.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}),
    "ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}),
    "realesrgan_enabled_models": OptionInfo(["Real-ESRGAN 4x plus", "Real-ESRGAN 4x plus anime 6B"], "Select which RealESRGAN models to show in the web UI. (Requires restart)", gr.CheckboxGroup, lambda: {"choices": realesrgan_models_names()}),
    "SWIN_tile": OptionInfo(192, "Tile size for all SwinIR.", gr.Slider, {"minimum": 16, "maximum": 512, "step": 16}),
    "SWIN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for SwinIR. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}),
    "ldsr_steps": OptionInfo(100, "LDSR processing steps. Lower = faster", gr.Slider, {"minimum": 1, "maximum": 200, "step": 1}),
    "ldsr_pre_down": OptionInfo(1, "LDSR Pre-process down-sample scale. 1 = no down-sampling, 4 = 1/4 scale.", gr.Slider, {"minimum": 1, "maximum": 4, "step": 1}),
    "ldsr_post_down": OptionInfo(1, "LDSR Post-process down-sample scale. 1 = no down-sampling, 4 = 1/4 scale.", gr.Slider, {"minimum": 1, "maximum": 4, "step": 1}),

    "upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Radio, lambda: {"choices": [x.name for x in sd_upscalers]}),
}))

options_templates.update(options_section(('face-restoration', "Face restoration"), {
    "face_restoration_model": OptionInfo(None, "Face restoration model", gr.Radio, lambda: {"choices": [x.name() for x in face_restorers]}),
    "code_former_weight": OptionInfo(0.5, "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}),
    "face_restoration_unload": OptionInfo(False, "Move face restoration model from VRAM into RAM after processing"),
    "save_selected_only": OptionInfo(False, "When using 'Save' button, only save a single selected image"),
}))

options_templates.update(options_section(('system', "System"), {
    "memmon_poll_rate": OptionInfo(8, "VRAM usage polls per second during generation. Set to 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 40, "step": 1}),
    "samples_log_stdout": OptionInfo(False, "Always print all generation info to standard output"),
    "multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job. Broken in PyCharm console."),
options_templates.update(options_section(('sd', "Stable Diffusion"), {
    "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Radio, lambda: {"choices": [x.title for x in modules.sd_models.checkpoints_list.values()]}),
    "img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
Robin Fernandes's avatar
Robin Fernandes 已提交
    "save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"),    
    "img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising)."),
    "enable_quantization": OptionInfo(False, "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply."),
    "enable_emphasis": OptionInfo(True, "Use (text) to make model pay more attention to text and [text] to make it pay less attention"),
    "enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"),
    "filter_nsfw": OptionInfo(False, "Filter NSFW content"),
    "random_artist_categories": OptionInfo([], "Allowed categories for random artists selection when using the Roll button", gr.CheckboxGroup, {"choices": artist_db.categories()}),
options_templates.update(options_section(('interrogate', "Interrogate Options"), {
    "interrogate_keep_models_in_memory": OptionInfo(False, "Interrogate: keep models in VRAM"),
    "interrogate_use_builtin_artists": OptionInfo(True, "Interrogate: use artists from artists.csv"),
    "interrogate_clip_num_beams": OptionInfo(1, "Interrogate: num_beams for BLIP", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}),
    "interrogate_clip_min_length": OptionInfo(24, "Interrogate: minimum description length (excluding artists, etc..)", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}),
    "interrogate_clip_max_length": OptionInfo(48, "Interrogate: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}),
    "interrogate_clip_dict_limit": OptionInfo(1500, "Interrogate: maximum number of lines in text file (0 = No limit)"),
}))

options_templates.update(options_section(('ui', "User interface"), {
    "show_progressbar": OptionInfo(True, "Show progressbar"),
    "show_progress_every_n_steps": OptionInfo(0, "Show show image creation progress every N sampling steps. Set 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 32, "step": 1}),
    "return_grid": OptionInfo(True, "Show grid in results for web"),
    "add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"),
    "font": OptionInfo("", "Font for image grids that have text"),
    "js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"),
    "js_modal_lightbox_initialy_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"),
}))

options_templates.update(options_section(('sampler-params', "Sampler parameters"), {
C43H66N12O12S2's avatar
C43H66N12O12S2 已提交
  "eta": OptionInfo(0.0, "DDIM and K Ancestral eta", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
DepFA's avatar
DepFA 已提交
  "ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform','quad']}),
DepFA's avatar
DepFA 已提交
  's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
  's_tmin':  OptionInfo(0.0, "sigma tmin",  gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
  's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
    data_labels = options_templates
    typemap = {int: float}

    def __init__(self):
        self.data = {k: v.default for k, v in self.data_labels.items()}

    def __setattr__(self, key, value):
        if self.data is not None:
            if key in self.data:
                self.data[key] = value

        return super(Options, self).__setattr__(key, value)

    def __getattr__(self, item):
        if self.data is not None:
            if item in self.data:
                return self.data[item]

        if item in self.data_labels:
            return self.data_labels[item].default

        return super(Options, self).__getattribute__(item)

    def save(self, filename):
        with open(filename, "w", encoding="utf8") as file:
            json.dump(self.data, file)

    def same_type(self, x, y):
        if x is None or y is None:
            return True
        type_x = self.typemap.get(type(x), type(x))
        type_y = self.typemap.get(type(y), type(y))
        return type_x == type_y
    def load(self, filename):
        with open(filename, "r", encoding="utf8") as file:
            self.data = json.load(file)

        bad_settings = 0
        for k, v in self.data.items():
            info = self.data_labels.get(k, None)
            if info is not None and not self.same_type(info.default, v):
                print(f"Warning: bad setting value: {k}: {v} ({type(v).__name__}; expected {type(info.default).__name__})", file=sys.stderr)
                bad_settings += 1

        if bad_settings > 0:
            print(f"The program is likely to not work with bad settings.\nSettings file: {filename}\nEither fix the file, or delete it and restart.", file=sys.stderr)

    def onchange(self, key, func):
        item = self.data_labels.get(key)
        item.onchange = func

    def dumpjson(self):
        d = {k: self.data.get(k, self.data_labels.get(k).default) for k in self.data_labels.keys()}
        return json.dumps(d)


opts = Options()
if os.path.exists(config_filename):
    opts.load(config_filename)

AUTOMATIC's avatar
AUTOMATIC 已提交
sd_upscalers = []
progress_print_out = sys.stdout

class TotalTQDM:
    def __init__(self):
        self._tqdm = None

    def reset(self):
        self._tqdm = tqdm.tqdm(
            desc="Total progress",
            total=state.job_count * state.sampling_steps,
            position=1,
            file=progress_print_out
        )

    def update(self):
        if not opts.multiple_tqdm:
            return
        if self._tqdm is None:
            self.reset()
        self._tqdm.update()

    def updateTotal(self, new_total):
        if not opts.multiple_tqdm:
            return
        if self._tqdm is None:
            self.reset()
        self._tqdm.total=new_total

    def clear(self):
        if self._tqdm is not None:
            self._tqdm.close()
            self._tqdm = None


total_tqdm = TotalTQDM()
EyeDeck's avatar
EyeDeck 已提交

mem_mon = modules.memmon.MemUsageMonitor("MemMon", device, opts)
mem_mon.start()