Skip to content
代码片段 群组 项目
shared.py 8.2 KB
更新 更旧
  • 了解如何忽略特定修订
  • import argparse
    import json
    import os
    import gradio as gr
    import torch
    
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
    import modules.artists
    
    from modules.paths import script_path, sd_path
    
    config_filename = "config.json"
    
    sd_model_file = os.path.join(script_path, 'model.ckpt')
    if not os.path.exists(sd_model_file):
        sd_model_file = "models/ldm/stable-diffusion-v1/model.ckpt"
    
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", type=str, default=os.path.join(sd_path, "configs/stable-diffusion/v1-inference.yaml"), help="path to config which constructs model",)
    parser.add_argument("--ckpt", type=str, default=os.path.join(sd_path, sd_model_file), help="path to checkpoint of model",)
    parser.add_argument("--gfpgan-dir", type=str, help="GFPGAN directory", default=('./src/gfpgan' if os.path.exists('./src/gfpgan') else './GFPGAN'))
    parser.add_argument("--gfpgan-model", type=str, help="GFPGAN model file name", default='GFPGANv1.3.pth')
    parser.add_argument("--no-half", action='store_true', help="do not switch the model to 16-bit floats")
    parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware accleration in browser)")
    parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
    parser.add_argument("--embeddings-dir", type=str, default='embeddings', help="embeddings dirtectory for textual inversion (default: embeddings)")
    parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui")
    parser.add_argument("--medvram", action='store_true', help="enable stable diffusion model optimizations for sacrficing a little speed for low VRM usage")
    parser.add_argument("--lowvram", action='store_true', help="enable stable diffusion model optimizations for sacrficing a lot of speed for very low VRM usage")
    parser.add_argument("--always-batch-cond-uncond", action='store_true', help="a workaround test; may help with speed in you use --lowvram")
    
    parser.add_argument("--unload-gfpgan", action='store_true', help="unload GFPGAN every time after processing images. Warning: seems to cause memory leaks")
    
    parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast")
    parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site (doesn't work for me but you might have better luck)")
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
    parser.add_argument("--esrgan-models-path", type=str, help="path to directory with ESRGAN models", default=os.path.join(script_path, 'ESRGAN'))
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
    parser.add_argument("--opt-split-attention", action='store_true', help="enable optimization that reduced vram usage by a lot for about 10% decrease in performance")
    
    parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests")
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
    cmd_opts = parser.parse_args()
    
    
    cpu = torch.device("cpu")
    gpu = torch.device("cuda")
    device = gpu if torch.cuda.is_available() else cpu
    batch_cond_uncond = cmd_opts.always_batch_cond_uncond or not (cmd_opts.lowvram or cmd_opts.medvram)
    
    class State:
        interrupted = False
        job = ""
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
        job_no = 0
        job_count = 0
        sampling_step = 0
        sampling_steps = 0
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
        def nextjob(self):
            self.job_no += 1
            self.sampling_step = 0
    
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
    artist_db = modules.artists.ArtistsDatabase(os.path.join(script_path, 'artists.csv'))
    
    
    
    class Options:
        class OptionInfo:
            def __init__(self, default=None, label="", component=None, component_args=None):
                self.default = default
                self.label = label
                self.component = component
                self.component_args = component_args
    
        data = None
        data_labels = {
            "outdir_samples": OptionInfo("", "Output dictectory for images; if empty, defaults to two directories below"),
            "outdir_txt2img_samples": OptionInfo("outputs/txt2img-images", 'Output dictectory for txt2img images'),
            "outdir_img2img_samples": OptionInfo("outputs/img2img-images", 'Output dictectory for img2img images'),
            "outdir_extras_samples": OptionInfo("outputs/extras-images", 'Output dictectory for images from extras tab'),
            "outdir_grids": OptionInfo("", "Output dictectory for grids; if empty, defaults to two directories below"),
            "outdir_txt2img_grids": OptionInfo("outputs/txt2img-grids", 'Output dictectory for txt2img grids'),
            "outdir_img2img_grids": OptionInfo("outputs/img2img-grids", 'Output dictectory for img2img grids'),
            "save_to_dirs": OptionInfo(False, "When writing images/grids, create a directory with name derived from the prompt"),
            "save_to_dirs_prompt_len": OptionInfo(10, "When using above, how many words from prompt to put into directory name", gr.Slider, {"minimum": 1, "maximum": 32, "step": 1}),
            "outdir_save": OptionInfo("log/images", "Directory for saving images using the Save button"),
            "samples_save": OptionInfo(True, "Save indiviual samples"),
            "samples_format": OptionInfo('png', 'File format for indiviual samples'),
            "grid_save": OptionInfo(True, "Save image grids"),
            "return_grid": OptionInfo(True, "Show grid in results for web"),
            "grid_format": OptionInfo('png', 'File format for grids'),
            "grid_extended_filename": OptionInfo(False, "Add extended info (seed, prompt) to filename when saving grid"),
            "grid_only_if_multiple": OptionInfo(True, "Do not save grids consisting of one picture"),
            "n_rows": OptionInfo(-1, "Grid row count; use -1 for autodetect and 0 for it to be same as batch size", gr.Slider, {"minimum": -1, "maximum": 16, "step": 1}),
            "jpeg_quality": OptionInfo(80, "Quality for saved jpeg images", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}),
            "export_for_4chan": OptionInfo(True, "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG"),
            "enable_pnginfo": OptionInfo(True, "Save text information about generation parameters as chunks to png files"),
            "font": OptionInfo("arial.ttf", "Font for image grids  that have text"),
            "enable_emphasis": OptionInfo(True, "Use (text) to make model pay more attention to text text and [text] to make it pay less attention"),
            "save_txt": OptionInfo(False, "Create a text file next to every image with generation parameters."),
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
            "ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscaling. 0 = no tiling.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}),
            "ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for ESRGAN upscaling. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}),
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
            "random_artist_categories": OptionInfo([], "Allowed categories for random artists selection when using the Roll button", gr.CheckboxGroup, {"choices": artist_db.categories()}),
            "upscale_at_full_resolution_padding": OptionInfo(16, "Inpainting at full resolution: padding, in pixels, for the masked region.", gr.Slider, {"minimum": 0, "maximum": 128, "step": 4}),
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
            "show_progressbar": OptionInfo(True, "Show progressbar"),
    
        }
    
        def __init__(self):
            self.data = {k: v.default for k, v in self.data_labels.items()}
    
        def __setattr__(self, key, value):
            if self.data is not None:
                if key in self.data:
                    self.data[key] = value
    
            return super(Options, self).__setattr__(key, value)
    
        def __getattr__(self, item):
            if self.data is not None:
                if item in self.data:
                    return self.data[item]
    
            if item in self.data_labels:
                return self.data_labels[item].default
    
            return super(Options, self).__getattribute__(item)
    
        def save(self, filename):
            with open(filename, "w", encoding="utf8") as file:
                json.dump(self.data, file)
    
        def load(self, filename):
            with open(filename, "r", encoding="utf8") as file:
                self.data = json.load(file)
    
    
    opts = Options()
    if os.path.exists(config_filename):
        opts.load(config_filename)
    
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
    sd_upscalers = []