Skip to content
代码片段 群组 项目
loopback.py 3.0 KB
更新 更旧
  • 了解如何忽略特定修订
  • import numpy as np
    from tqdm import trange
    
    import modules.scripts as scripts
    import gradio as gr
    
    from modules import processing, shared, sd_samplers, images
    from modules.processing import Processed
    from modules.sd_samplers import samplers
    from modules.shared import opts, cmd_opts, state
    
    
    class Script(scripts.Script):
        def title(self):
            return "Loopback"
    
        def show(self, is_img2img):
            return is_img2img
    
    
        def ui(self, is_img2img):        
            loops = gr.Slider(minimum=1, maximum=32, step=1, label='Loops', value=4, elem_id=self.elem_id("loops"))
            denoising_strength_change_factor = gr.Slider(minimum=0.9, maximum=1.1, step=0.01, label='Denoising strength change factor', value=1, elem_id=self.elem_id("denoising_strength_change_factor"))
    
    
            return [loops, denoising_strength_change_factor]
    
        def run(self, p, loops, denoising_strength_change_factor):
            processing.fix_seed(p)
            batch_count = p.n_iter
            p.extra_generation_params = {
                "Denoising strength change factor": denoising_strength_change_factor,
            }
    
            p.batch_size = 1
            p.n_iter = 1
    
            output_images, info = None, None
            initial_seed = None
            initial_info = None
    
            grids = []
            all_images = []
    
            original_init_image = p.init_images
    
            initial_color_corrections = [processing.setup_color_correction(p.init_images[0])]
    
                # Reset to original init image at the start of each batch
                p.init_images = original_init_image
    
    
                for i in range(loops):
                    p.n_iter = 1
                    p.batch_size = 1
                    p.do_not_save_grid = True
    
    
                    if opts.img2img_color_correction:
                        p.color_corrections = initial_color_corrections
    
    
                    state.job = f"Iteration {i + 1}/{loops}, batch {n + 1}/{batch_count}"
    
                    processed = processing.process_images(p)
    
                    if initial_seed is None:
                        initial_seed = processed.seed
                        initial_info = processed.info
    
                    init_img = processed.images[0]
    
                    p.init_images = [init_img]
                    p.seed = processed.seed + 1
                    p.denoising_strength = min(max(p.denoising_strength * denoising_strength_change_factor, 0.1), 1)
                    history.append(processed.images[0])
    
                grid = images.image_grid(history, rows=1)
                if opts.grid_save:
                    images.save_image(grid, p.outpath_grids, "grid", initial_seed, p.prompt, opts.grid_format, info=info, short_filename=not opts.grid_extended_filename, grid=True, p=p)
    
                grids.append(grid)
                all_images += history
    
            if opts.return_grid:
                all_images = grids + all_images
    
            processed = Processed(p, all_images, initial_seed, initial_info)
    
            return processed