Skip to content
代码片段 群组 项目
processing.py 38.2 KB
更新 更旧
  • 了解如何忽略特定修订
  • import json
    import math
    import os
    import sys
    
    import torch
    import numpy as np
    from PIL import Image, ImageFilter, ImageOps
    import random
    
    import cv2
    from skimage import exposure
    
    from typing import Any, Dict, List, Optional
    
    import modules.sd_hijack
    
    from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste
    
    from modules.sd_hijack import model_hijack
    from modules.shared import opts, cmd_opts, state
    import modules.shared as shared
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
    import modules.face_restoration
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
    import modules.styles
    
    import logging
    
    # some of those options should not be changed at all because they would break the model, so I removed them from options.
    opt_C = 4
    opt_f = 8
    
    
    
    def setup_color_correction(image):
    
        logging.info("Calibrating color correction.")
    
        correction_target = cv2.cvtColor(np.asarray(image.copy()), cv2.COLOR_RGB2LAB)
        return correction_target
    
    
    def apply_color_correction(correction, image):
    
        logging.info("Applying color correction.")
    
        image = Image.fromarray(cv2.cvtColor(exposure.match_histograms(
            cv2.cvtColor(
                np.asarray(image),
                cv2.COLOR_RGB2LAB
            ),
            correction,
            channel_axis=2
        ), cv2.COLOR_LAB2RGB).astype("uint8"))
    
        return image
    
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
    
    def apply_overlay(image, paste_loc, index, overlays):
        if overlays is None or index >= len(overlays):
            return image
    
        overlay = overlays[index]
    
        if paste_loc is not None:
            x, y, w, h = paste_loc
            base_image = Image.new('RGBA', (overlay.width, overlay.height))
            image = images.resize_image(1, image, w, h)
            base_image.paste(image, (x, y))
            image = base_image
    
        image = image.convert('RGBA')
        image.alpha_composite(overlay)
        image = image.convert('RGB')
    
    def get_correct_sampler(p):
        if isinstance(p, modules.processing.StableDiffusionProcessingTxt2Img):
            return sd_samplers.samplers
        elif isinstance(p, modules.processing.StableDiffusionProcessingImg2Img):
            return sd_samplers.samplers_for_img2img
    
        elif isinstance(p, modules.api.processing.StableDiffusionProcessingAPI):
            return sd_samplers.samplers
    
    class StableDiffusionProcessing():
        """
        The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
        """
    
        def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_index: int = 0, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None):
    
            self.sd_model = sd_model
            self.outpath_samples: str = outpath_samples
            self.outpath_grids: str = outpath_grids
            self.prompt: str = prompt
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
            self.prompt_for_display: str = None
    
            self.negative_prompt: str = (negative_prompt or "")
    
            self.styles: list = styles or []
    
            self.subseed: int = subseed
            self.subseed_strength: float = subseed_strength
            self.seed_resize_from_h: int = seed_resize_from_h
            self.seed_resize_from_w: int = seed_resize_from_w
    
            self.sampler_index: int = sampler_index
            self.batch_size: int = batch_size
            self.n_iter: int = n_iter
            self.steps: int = steps
            self.cfg_scale: float = cfg_scale
            self.width: int = width
            self.height: int = height
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
            self.restore_faces: bool = restore_faces
    
            self.tiling: bool = tiling
    
            self.do_not_save_samples: bool = do_not_save_samples
            self.do_not_save_grid: bool = do_not_save_grid
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
            self.extra_generation_params: dict = extra_generation_params or {}
    
            self.overlay_images = overlay_images
    
            self.do_not_reload_embeddings = do_not_reload_embeddings
    
            self.color_corrections = None
    
            self.denoising_strength: float = denoising_strength
    
            self.sampler_noise_scheduler_override = None
    
            self.ddim_discretize = ddim_discretize or opts.ddim_discretize
    
            self.s_churn = s_churn or opts.s_churn
            self.s_tmin = s_tmin or opts.s_tmin
            self.s_tmax = s_tmax or float('inf')  # not representable as a standard ui option
            self.s_noise = s_noise or opts.s_noise
    
            self.override_settings = {k: v for k, v in (override_settings or {}).items() if k not in shared.restricted_opts}
    
            if not seed_enable_extras:
                self.subseed = -1
                self.subseed_strength = 0
                self.seed_resize_from_h = 0
                self.seed_resize_from_w = 0
    
    
            self.scripts = None
            self.script_args = None
            self.all_prompts = None
            self.all_seeds = None
            self.all_subseeds = None
    
    
        def txt2img_image_conditioning(self, x, width=None, height=None):
            if self.sampler.conditioning_key not in {'hybrid', 'concat'}:
                # Dummy zero conditioning if we're not using inpainting model.
                # Still takes up a bit of memory, but no encoder call.
                # Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
                return torch.zeros(
                    x.shape[0], 5, 1, 1, 
                    dtype=x.dtype, 
                    device=x.device
                )
    
            height = height or self.height
            width = width or self.width
    
            # The "masked-image" in this case will just be all zeros since the entire image is masked.
            image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device)
            image_conditioning = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image_conditioning)) 
    
            # Add the fake full 1s mask to the first dimension.
            image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
            image_conditioning = image_conditioning.to(x.dtype)            
    
            return image_conditioning
    
        def img2img_image_conditioning(self, source_image, latent_image, image_mask = None):
            if self.sampler.conditioning_key not in {'hybrid', 'concat'}:
                # Dummy zero conditioning if we're not using inpainting model.
                return torch.zeros(
                    latent_image.shape[0], 5, 1, 1,
                    dtype=latent_image.dtype,
                    device=latent_image.device
                )
    
            # Handle the different mask inputs
            if image_mask is not None:
                if torch.is_tensor(image_mask):
                    conditioning_mask = image_mask
                else:
                    conditioning_mask = np.array(image_mask.convert("L"))
                    conditioning_mask = conditioning_mask.astype(np.float32) / 255.0
                    conditioning_mask = torch.from_numpy(conditioning_mask[None, None])
    
                    # Inpainting model uses a discretized mask as input, so we round to either 1.0 or 0.0
                    conditioning_mask = torch.round(conditioning_mask)
            else:
                conditioning_mask = torch.ones(1, 1, *source_image.shape[-2:])
    
            # Create another latent image, this time with a masked version of the original input.
            # Smoothly interpolate between the masked and unmasked latent conditioning image using a parameter.
            conditioning_mask = conditioning_mask.to(source_image.device)
            conditioning_image = torch.lerp(
                source_image,
                source_image * (1.0 - conditioning_mask),
                getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight)
            )
            
            # Encode the new masked image using first stage of network.
            conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image))
    
            # Create the concatenated conditioning tensor to be fed to `c_concat`
            conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=latent_image.shape[-2:])
            conditioning_mask = conditioning_mask.expand(conditioning_image.shape[0], -1, -1, -1)
            image_conditioning = torch.cat([conditioning_mask, conditioning_image], dim=1)
            image_conditioning = image_conditioning.to(shared.device).type(self.sd_model.dtype)
    
            return image_conditioning
    
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
        def init(self, all_prompts, all_seeds, all_subseeds):
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
        def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
    
        def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None):
    
            self.images = images_list
            self.prompt = p.prompt
    
            self.negative_prompt = p.negative_prompt
    
            self.subseed = subseed
            self.subseed_strength = p.subseed_strength
    
            self.info = info
            self.width = p.width
            self.height = p.height
    
            self.sampler = sd_samplers.samplers[p.sampler_index].name
    
            self.cfg_scale = p.cfg_scale
            self.steps = p.steps
    
            self.batch_size = p.batch_size
            self.restore_faces = p.restore_faces
            self.face_restoration_model = opts.face_restoration_model if p.restore_faces else None
            self.sd_model_hash = shared.sd_model.sd_model_hash
            self.seed_resize_from_w = p.seed_resize_from_w
            self.seed_resize_from_h = p.seed_resize_from_h
            self.denoising_strength = getattr(p, 'denoising_strength', None)
            self.extra_generation_params = p.extra_generation_params
            self.index_of_first_image = index_of_first_image
    
    Milly's avatar
    Milly 已提交
            self.styles = p.styles
    
    Milly's avatar
    Milly 已提交
            self.job_timestamp = state.job_timestamp
    
            self.clip_skip = opts.CLIP_stop_at_last_layers
    
    C43H66N12O12S2's avatar
    C43H66N12O12S2 已提交
            self.eta = p.eta
    
            self.ddim_discretize = p.ddim_discretize
            self.s_churn = p.s_churn
            self.s_tmin = p.s_tmin
            self.s_tmax = p.s_tmax
            self.s_noise = p.s_noise
    
            self.sampler_noise_scheduler_override = p.sampler_noise_scheduler_override
    
            self.prompt = self.prompt if type(self.prompt) != list else self.prompt[0]
            self.negative_prompt = self.negative_prompt if type(self.negative_prompt) != list else self.negative_prompt[0]
    
            self.seed = int(self.seed if type(self.seed) != list else self.seed[0]) if self.seed is not None else -1
    
            self.subseed = int(self.subseed if type(self.subseed) != list else self.subseed[0]) if self.subseed is not None else -1
    
            self.all_prompts = all_prompts or [self.prompt]
            self.all_seeds = all_seeds or [self.seed]
            self.all_subseeds = all_subseeds or [self.subseed]
    
            self.infotexts = infotexts or [info]
    
                "prompt": self.prompt,
                "all_prompts": self.all_prompts,
                "negative_prompt": self.negative_prompt,
                "seed": self.seed,
                "all_seeds": self.all_seeds,
                "subseed": self.subseed,
                "all_subseeds": self.all_subseeds,
    
                "subseed_strength": self.subseed_strength,
    
                "width": self.width,
                "height": self.height,
    
                "sampler": self.sampler,
                "cfg_scale": self.cfg_scale,
                "steps": self.steps,
    
                "batch_size": self.batch_size,
                "restore_faces": self.restore_faces,
                "face_restoration_model": self.face_restoration_model,
                "sd_model_hash": self.sd_model_hash,
                "seed_resize_from_w": self.seed_resize_from_w,
                "seed_resize_from_h": self.seed_resize_from_h,
                "denoising_strength": self.denoising_strength,
                "extra_generation_params": self.extra_generation_params,
                "index_of_first_image": self.index_of_first_image,
    
                "infotexts": self.infotexts,
    
    Milly's avatar
    Milly 已提交
                "styles": self.styles,
    
    Milly's avatar
    Milly 已提交
                "job_timestamp": self.job_timestamp,
    
        def infotext(self,  p: StableDiffusionProcessing, index):
            return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size)
    
    
    
    # from https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475/3
    def slerp(val, low, high):
        low_norm = low/torch.norm(low, dim=1, keepdim=True)
        high_norm = high/torch.norm(high, dim=1, keepdim=True)
    
        dot = (low_norm*high_norm).sum(1)
    
        if dot.mean() > 0.9995:
            return low * val + high * (1 - val)
    
        omega = torch.acos(dot)
    
        so = torch.sin(omega)
        res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high
        return res
    
    def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None):
    
        # if we have multiple seeds, this means we are working with batch size>1; this then
        # enables the generation of additional tensors with noise that the sampler will use during its processing.
    
        # Using those pre-generated tensors instead of simple torch.randn allows a batch with seeds [100, 101] to
    
        # produce the same images as with two batches [100], [101].
    
        if p is not None and p.sampler is not None and (len(seeds) > 1 and opts.enable_batch_seeds or opts.eta_noise_seed_delta > 0):
    
            sampler_noises = [[] for _ in range(p.sampler.number_of_needed_noises(p))]
        else:
            sampler_noises = None
    
    
        for i, seed in enumerate(seeds):
            noise_shape = shape if seed_resize_from_h <= 0 or seed_resize_from_w <= 0 else (shape[0], seed_resize_from_h//8, seed_resize_from_w//8)
    
            subnoise = None
            if subseeds is not None:
                subseed = 0 if i >= len(subseeds) else subseeds[i]
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
                subnoise = devices.randn(subseed, noise_shape)
    
    
            # randn results depend on device; gpu and cpu get different results for same seed;
            # the way I see it, it's better to do this on CPU, so that everyone gets same result;
    
            # but the original script had it like this, so I do not dare change it for now because
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
            noise = devices.randn(seed, noise_shape)
    
    
            if subnoise is not None:
                noise = slerp(subseed_strength, noise, subnoise)
    
            if noise_shape != shape:
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
                x = devices.randn(seed, shape)
                dx = (shape[2] - noise_shape[2]) // 2
    
                dy = (shape[1] - noise_shape[1]) // 2
                w = noise_shape[2] if dx >= 0 else noise_shape[2] + 2 * dx
                h = noise_shape[1] if dy >= 0 else noise_shape[1] + 2 * dy
                tx = 0 if dx < 0 else dx
                ty = 0 if dy < 0 else dy
                dx = max(-dx, 0)
                dy = max(-dy, 0)
    
                x[:, ty:ty+h, tx:tx+w] = noise[:, dy:dy+h, dx:dx+w]
                noise = x
    
    
            if sampler_noises is not None:
                cnt = p.sampler.number_of_needed_noises(p)
    
                if opts.eta_noise_seed_delta > 0:
                    torch.manual_seed(seed + opts.eta_noise_seed_delta)
    
    
                for j in range(cnt):
                    sampler_noises[j].append(devices.randn_without_seed(tuple(noise_shape)))
    
    
        if sampler_noises is not None:
            p.sampler.sampler_noises = [torch.stack(n).to(shared.device) for n in sampler_noises]
    
    
        x = torch.stack(xs).to(shared.device)
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
    def decode_first_stage(model, x):
        with devices.autocast(disable=x.dtype == devices.dtype_vae):
            x = model.decode_first_stage(x)
    
        return x
    
    
    
    def get_fixed_seed(seed):
        if seed is None or seed == '' or seed == -1:
            return int(random.randrange(4294967294))
    
        return seed
    
    
    
    def fix_seed(p):
    
        p.seed = get_fixed_seed(p.seed)
        p.subseed = get_fixed_seed(p.subseed)
    
    def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration=0, position_in_batch=0):
        index = position_in_batch + iteration * p.batch_size
    
    
        clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers)
    
            "Sampler": get_correct_sampler(p)[p.sampler_index].name,
    
            "CFG scale": p.cfg_scale,
            "Seed": all_seeds[index],
            "Face restoration": (opts.face_restoration_model if p.restore_faces else None),
            "Size": f"{p.width}x{p.height}",
            "Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash),
    
            "Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')),
    
            "Hypernet": (None if shared.loaded_hypernetwork is None else shared.loaded_hypernetwork.name),
    
            "Batch size": (None if p.batch_size < 2 else p.batch_size),
            "Batch pos": (None if p.batch_size < 2 else position_in_batch),
            "Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]),
            "Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
            "Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
            "Denoising strength": getattr(p, 'denoising_strength', None),
    
            "Eta": (None if p.sampler is None or p.sampler.eta == p.sampler.default_eta else p.sampler.eta),
    
            "Clip skip": None if clip_skip <= 1 else clip_skip,
    
            "ENSD": None if opts.eta_noise_seed_delta == 0 else opts.eta_noise_seed_delta,
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
        generation_params.update(p.extra_generation_params)
    
        generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None])
    
    
        negative_prompt_text = "\nNegative prompt: " + p.negative_prompt if p.negative_prompt else ""
    
    
        return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip()
    
    def process_images(p: StableDiffusionProcessing) -> Processed:
    
        stored_opts = {k: opts.data[k] for k in p.override_settings.keys()}
    
        try:
            for k, v in p.override_settings.items():
                opts.data[k] = v  # we don't call onchange for simplicity which makes changing model, hypernet impossible
    
            res = process_images_inner(p)
    
        finally:
            for k, v in stored_opts.items():
                opts.data[k] = v
    
        return res
    
    
    def process_images_inner(p: StableDiffusionProcessing) -> Processed:
    
        """this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
    
    
        if type(p.prompt) == list:
            assert(len(p.prompt) > 0)
        else:
            assert p.prompt is not None
    
        with open(os.path.join(shared.script_path, "params.txt"), "w", encoding="utf8") as file:
            processed = Processed(p, [], p.seed, "")
            file.write(processed.infotext(p, 0))
    
    
        devices.torch_gc()
    
        seed = get_fixed_seed(p.seed)
        subseed = get_fixed_seed(p.subseed)
    
        modules.sd_hijack.model_hijack.apply_circular(p.tiling)
    
        modules.sd_hijack.model_hijack.clear_comments()
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
        shared.prompt_styles.apply_styles(p)
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
    
        if type(p.prompt) == list:
    
            p.all_prompts = p.prompt
    
            p.all_prompts = p.batch_size * p.n_iter * [p.prompt]
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
    
    
        if type(seed) == list:
    
            p.all_seeds = seed
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
        else:
    
            p.all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(p.all_prompts))]
    
        if type(subseed) == list:
    
            p.all_subseeds = subseed
    
            p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))]
    
    
        def infotext(iteration=0, position_in_batch=0):
    
            return create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds, comments, iteration, position_in_batch)
    
        if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
    
            model_hijack.embedding_db.load_textual_inversion_embeddings()
    
        if p.scripts is not None:
    
            p.scripts.process(p)
    
        with torch.no_grad(), p.sd_model.ema_scope():
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
            with devices.autocast():
    
                p.init(p.all_prompts, p.all_seeds, p.all_subseeds)
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
            if state.job_count == -1:
                state.job_count = p.n_iter
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
    
    
            for n in range(p.n_iter):
    
                if state.skipped:
                    state.skipped = False
                
    
                prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
                seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
                subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
    
                if len(prompts) == 0:
    
                    uc = prompt_parser.get_learned_conditioning(shared.sd_model, len(prompts) * [p.negative_prompt], p.steps)
    
                    c = prompt_parser.get_multicond_learned_conditioning(shared.sd_model, prompts, p.steps)
    
                    for comment in model_hijack.comments:
                        comments[comment] = 1
    
                    shared.state.job = f"Batch {n+1} out of {p.n_iter}"
    
                    samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength)
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
                samples_ddim = samples_ddim.to(devices.dtype_vae)
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
                x_samples_ddim = decode_first_stage(p.sd_model, samples_ddim)
    
                x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
    
    
                del samples_ddim
    
                if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
                    lowvram.send_everything_to_cpu()
    
                devices.torch_gc()
    
    
                if opts.filter_nsfw:
    
                    import modules.safety as safety
                    x_samples_ddim = modules.safety.censor_batch(x_samples_ddim)
    
                for i, x_sample in enumerate(x_samples_ddim):
    
                    x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
                    x_sample = x_sample.astype(np.uint8)
    
    
                    if p.restore_faces:
    
                        if opts.save and not p.do_not_save_samples and opts.save_images_before_face_restoration:
    
                            images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-face-restoration")
    
                        x_sample = modules.face_restoration.restore_faces(x_sample)
                        devices.torch_gc()
    
    Vladimir Repin's avatar
    Vladimir Repin 已提交
    
    
                    if p.color_corrections is not None and i < len(p.color_corrections):
    
                        if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction:
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
                            image_without_cc = apply_overlay(image, p.paste_to, i, p.overlay_images)
    
                            images.save_image(image_without_cc, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-color-correction")
    
                        image = apply_color_correction(p.color_corrections[i], image)
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
                    image = apply_overlay(image, p.paste_to, i, p.overlay_images)
    
    
                    if opts.samples_save and not p.do_not_save_samples:
    
                        images.save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p)
    
                    text = infotext(n, i)
                    infotexts.append(text)
    
                    if opts.enable_pnginfo:
                        image.info["parameters"] = text
    
                del x_samples_ddim 
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
    
    
                devices.torch_gc()
    
            p.color_corrections = None
    
    
            unwanted_grid_because_of_img_count = len(output_images) < 2 and opts.grid_only_if_multiple
    
            if (opts.return_grid or opts.grid_save) and not p.do_not_save_grid and not unwanted_grid_because_of_img_count:
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
                grid = images.image_grid(output_images, p.batch_size)
    
                if opts.return_grid:
    
                    text = infotext()
                    infotexts.insert(0, text)
    
                    if opts.enable_pnginfo:
                        grid.info["parameters"] = text
    
                    images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True)
    
        devices.torch_gc()
    
    
        res = Processed(p, output_images, p.all_seeds[0], infotext() + "".join(["\n\n" + x for x in comments]), subseed=p.all_subseeds[0], all_prompts=p.all_prompts, all_seeds=p.all_seeds, all_subseeds=p.all_subseeds, index_of_first_image=index_of_first_image, infotexts=infotexts)
    
        if p.scripts is not None:
            p.scripts.postprocess(p, res)
    
        return res
    
    
    
    class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
        sampler = None
    
        def __init__(self, enable_hr: bool=False, denoising_strength: float=0.75, firstphase_width: int=0, firstphase_height: int=0, **kwargs):
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
            super().__init__(**kwargs)
            self.enable_hr = enable_hr
            self.denoising_strength = denoising_strength
    
            self.firstphase_width = firstphase_width
            self.firstphase_height = firstphase_height
    
            self.truncate_x = 0
            self.truncate_y = 0
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
    
        def init(self, all_prompts, all_seeds, all_subseeds):
            if self.enable_hr:
                if state.job_count == -1:
                    state.job_count = self.n_iter * 2
                else:
                    state.job_count = state.job_count * 2
    
    
                self.extra_generation_params["First pass size"] = f"{self.firstphase_width}x{self.firstphase_height}"
    
    
                if self.firstphase_width == 0 or self.firstphase_height == 0:
                    desired_pixel_count = 512 * 512
                    actual_pixel_count = self.width * self.height
                    scale = math.sqrt(desired_pixel_count / actual_pixel_count)
                    self.firstphase_width = math.ceil(scale * self.width / 64) * 64
                    self.firstphase_height = math.ceil(scale * self.height / 64) * 64
                    firstphase_width_truncated = int(scale * self.width)
                    firstphase_height_truncated = int(scale * self.height)
    
                else:
    
                    width_ratio = self.width / self.firstphase_width
                    height_ratio = self.height / self.firstphase_height
    
                    if width_ratio > height_ratio:
                        firstphase_width_truncated = self.firstphase_width
                        firstphase_height_truncated = self.firstphase_width * self.height / self.width
                    else:
                        firstphase_width_truncated = self.firstphase_height * self.width / self.height
                        firstphase_height_truncated = self.firstphase_height
    
                self.truncate_x = int(self.firstphase_width - firstphase_width_truncated) // opt_f
                self.truncate_y = int(self.firstphase_height - firstphase_height_truncated) // opt_f
    
    
        def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
            self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
    
            if not self.enable_hr:
                x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
    
                samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
                return samples
    
            x = create_random_tensors([opt_C, self.firstphase_height // opt_f, self.firstphase_width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
    
            samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x, self.firstphase_width, self.firstphase_height))
    
            samples = samples[:, :, self.truncate_y//2:samples.shape[2]-self.truncate_y//2, self.truncate_x//2:samples.shape[3]-self.truncate_x//2]
    
            if opts.use_scale_latent_for_hires_fix:
                samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
    
                decoded_samples = decode_first_stage(self.sd_model, samples)
    
                lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0)
    
                batch_images = []
                for i, x_sample in enumerate(lowres_samples):
                    x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
                    x_sample = x_sample.astype(np.uint8)
                    image = Image.fromarray(x_sample)
                    image = images.resize_image(0, image, self.width, self.height)
                    image = np.array(image).astype(np.float32) / 255.0
                    image = np.moveaxis(image, 2, 0)
                    batch_images.append(image)
    
                decoded_samples = torch.from_numpy(np.array(batch_images))
                decoded_samples = decoded_samples.to(shared.device)
                decoded_samples = 2. * decoded_samples - 1.
    
    
                samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples))
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
    
            shared.state.nextjob()
    
            self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
    
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
            noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
            image_conditioning = self.txt2img_image_conditioning(x)
    
    
            # GC now before running the next img2img to prevent running out of memory
            x = None
            devices.torch_gc()
    
            samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.steps, image_conditioning=image_conditioning)
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
    
            return samples
    
    
    
    class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
        sampler = None
    
    
        def __init__(self, init_images: list=None, resize_mode: int=0, denoising_strength: float=0.75, mask: Any=None, mask_blur: int=4, inpainting_fill: int=0, inpaint_full_res: bool=True, inpaint_full_res_padding: int=0, inpainting_mask_invert: int=0, **kwargs):
    
            super().__init__(**kwargs)
    
            self.init_images = init_images
            self.resize_mode: int = resize_mode
            self.denoising_strength: float = denoising_strength
            self.init_latent = None
            self.image_mask = mask
    
            #self.image_unblurred_mask = None
            self.latent_mask = None
    
            self.mask_for_overlay = None
            self.mask_blur = mask_blur
            self.inpainting_fill = inpainting_fill
            self.inpaint_full_res = inpaint_full_res
    
            self.inpaint_full_res_padding = inpaint_full_res_padding
    
            self.inpainting_mask_invert = inpainting_mask_invert
    
            self.image_conditioning = None
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
        def init(self, all_prompts, all_seeds, all_subseeds):
    
            self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers_for_img2img, self.sampler_index, self.sd_model)
    
            crop_region = None
    
            if self.image_mask is not None:
    
                self.image_mask = self.image_mask.convert('L')
    
                if self.inpainting_mask_invert:
                    self.image_mask = ImageOps.invert(self.image_mask)
    
    
                #self.image_unblurred_mask = self.image_mask
    
    
                    self.image_mask = self.image_mask.filter(ImageFilter.GaussianBlur(self.mask_blur))
    
    
                if self.inpaint_full_res:
                    self.mask_for_overlay = self.image_mask
                    mask = self.image_mask.convert('L')
    
                    crop_region = masking.get_crop_region(np.array(mask), self.inpaint_full_res_padding)
    
                    crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
    
                    x1, y1, x2, y2 = crop_region
    
                    mask = mask.crop(crop_region)
                    self.image_mask = images.resize_image(2, mask, self.width, self.height)
                    self.paste_to = (x1, y1, x2-x1, y2-y1)
                else:
                    self.image_mask = images.resize_image(self.resize_mode, self.image_mask, self.width, self.height)
    
                    np_mask = np.array(self.image_mask)
    
    JJ's avatar
    JJ 已提交
                    np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8)
    
                    self.mask_for_overlay = Image.fromarray(np_mask)
    
            latent_mask = self.latent_mask if self.latent_mask is not None else self.image_mask
    
    
            add_color_corrections = opts.img2img_color_correction and self.color_corrections is None
            if add_color_corrections:
                self.color_corrections = []
    
            imgs = []
            for img in self.init_images:
                image = img.convert("RGB")
    
                if crop_region is None:
                    image = images.resize_image(self.resize_mode, image, self.width, self.height)
    
                if self.image_mask is not None:
                    image_masked = Image.new('RGBa', (image.width, image.height))
                    image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))
    
                    self.overlay_images.append(image_masked.convert('RGBA'))
    
                if crop_region is not None:
                    image = image.crop(crop_region)
                    image = images.resize_image(2, image, self.width, self.height)
    
    
                if self.image_mask is not None:
                    if self.inpainting_fill != 1:
    
                        image = masking.fill(image, latent_mask)
    
                    self.color_corrections.append(setup_color_correction(image))
    
    
                image = np.array(image).astype(np.float32) / 255.0
                image = np.moveaxis(image, 2, 0)
    
                imgs.append(image)
    
            if len(imgs) == 1:
                batch_images = np.expand_dims(imgs[0], axis=0).repeat(self.batch_size, axis=0)
                if self.overlay_images is not None:
                    self.overlay_images = self.overlay_images * self.batch_size
    
    
                if self.color_corrections is not None and len(self.color_corrections) == 1:
                    self.color_corrections = self.color_corrections * self.batch_size
    
    
            elif len(imgs) <= self.batch_size:
                self.batch_size = len(imgs)
                batch_images = np.array(imgs)
            else:
                raise RuntimeError(f"bad number of images passed: {len(imgs)}; expecting {self.batch_size} or less")
    
            image = torch.from_numpy(batch_images)
            image = 2. * image - 1.
            image = image.to(shared.device)
    
            self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image))
    
            if self.image_mask is not None:
    
                init_mask = latent_mask
    
                latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
                latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
    
                latmask = np.around(latmask)
    
                latmask = np.tile(latmask[None], (4, 1, 1))
    
                self.mask = torch.asarray(1.0 - latmask).to(shared.device).type(self.sd_model.dtype)
                self.nmask = torch.asarray(latmask).to(shared.device).type(self.sd_model.dtype)
    
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
                # this needs to be fixed to be done in sample() using actual seeds for batches
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
                    self.init_latent = self.init_latent * self.mask + create_random_tensors(self.init_latent.shape[1:], all_seeds[0:self.init_latent.shape[0]]) * self.nmask
    
                elif self.inpainting_fill == 3:
                    self.init_latent = self.init_latent * self.mask
    
    
            self.image_conditioning = self.img2img_image_conditioning(image, self.init_latent, self.image_mask)
    
    AUTOMATIC's avatar
    AUTOMATIC 已提交
        def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
            x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
    
    
            samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
    
    
            if self.mask is not None:
                samples = samples * self.nmask + self.init_latent * self.mask
    
    
            del x
            devices.torch_gc()
    
    
            return samples