Skip to content
代码片段 群组 项目
sd_disable_initialization.py 4.6 KB
更新 更旧
  • 了解如何忽略特定修订
  • import ldm.modules.encoders.modules
    import open_clip
    import torch
    
    import transformers.utils.hub
    
        When an object of this class enters a `with` block, it starts:
        - preventing torch's layer initialization functions from working
        - changes CLIP and OpenCLIP to not download model weights
        - changes CLIP to not make requests to check if there is a new version of a file you already have
    
        When it leaves the block, it reverts everything to how it was before.
    
        Use it like this:
    
        def __init__(self):
            self.replaced = []
    
        def replace(self, obj, field, func):
            original = getattr(obj, field, None)
            if original is None:
                return None
    
            self.replaced.append((obj, field, original))
            setattr(obj, field, func)
    
            return original
    
    
        def __enter__(self):
            def do_nothing(*args, **kwargs):
                pass
    
            def create_model_and_transforms_without_pretrained(*args, pretrained=None, **kwargs):
                return self.create_model_and_transforms(*args, pretrained=None, **kwargs)
    
            def CLIPTextModel_from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs):
    
                res = self.CLIPTextModel_from_pretrained(None, *model_args, config=pretrained_model_name_or_path, state_dict={}, **kwargs)
                res.name_or_path = pretrained_model_name_or_path
                return res
    
            def transformers_modeling_utils_load_pretrained_model(*args, **kwargs):
                args = args[0:3] + ('/', ) + args[4:]  # resolved_archive_file; must set it to something to prevent what seems to be a bug
                return self.transformers_modeling_utils_load_pretrained_model(*args, **kwargs)
    
            def transformers_utils_hub_get_file_from_cache(original, url, *args, **kwargs):
    
    
                # this file is always 404, prevent making request
    
                if url == 'https://huggingface.co/openai/clip-vit-large-patch14/resolve/main/added_tokens.json' or url == 'openai/clip-vit-large-patch14' and args[0] == 'added_tokens.json':
                    return None
    
                    res = original(url, *args, local_files_only=True, **kwargs)
                    if res is None:
                        res = original(url, *args, local_files_only=False, **kwargs)
                    return res
    
                except Exception as e:
    
                    return original(url, *args, local_files_only=False, **kwargs)
    
            def transformers_utils_hub_get_from_cache(url, *args, local_files_only=False, **kwargs):
                return transformers_utils_hub_get_file_from_cache(self.transformers_utils_hub_get_from_cache, url, *args, **kwargs)
    
            def transformers_tokenization_utils_base_cached_file(url, *args, local_files_only=False, **kwargs):
                return transformers_utils_hub_get_file_from_cache(self.transformers_tokenization_utils_base_cached_file, url, *args, **kwargs)
    
            def transformers_configuration_utils_cached_file(url, *args, local_files_only=False, **kwargs):
                return transformers_utils_hub_get_file_from_cache(self.transformers_configuration_utils_cached_file, url, *args, **kwargs)
    
            self.replace(torch.nn.init, 'kaiming_uniform_', do_nothing)
            self.replace(torch.nn.init, '_no_grad_normal_', do_nothing)
            self.replace(torch.nn.init, '_no_grad_uniform_', do_nothing)
            self.create_model_and_transforms = self.replace(open_clip, 'create_model_and_transforms', create_model_and_transforms_without_pretrained)
            self.CLIPTextModel_from_pretrained = self.replace(ldm.modules.encoders.modules.CLIPTextModel, 'from_pretrained', CLIPTextModel_from_pretrained)
            self.transformers_modeling_utils_load_pretrained_model = self.replace(transformers.modeling_utils.PreTrainedModel, '_load_pretrained_model', transformers_modeling_utils_load_pretrained_model)
            self.transformers_tokenization_utils_base_cached_file = self.replace(transformers.tokenization_utils_base, 'cached_file', transformers_tokenization_utils_base_cached_file)
            self.transformers_configuration_utils_cached_file = self.replace(transformers.configuration_utils, 'cached_file', transformers_configuration_utils_cached_file)
            self.transformers_utils_hub_get_from_cache = self.replace(transformers.utils.hub, 'get_from_cache', transformers_utils_hub_get_from_cache)
    
    
        def __exit__(self, exc_type, exc_val, exc_tb):
    
            for obj, field, original in self.replaced:
                setattr(obj, field, original)
    
            self.replaced.clear()