From 530103b586109c11fd068eb70ef09503ec6a4caf Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Tue, 11 Oct 2022 14:53:02 +0300
Subject: [PATCH] fixes related to merge

---
 modules/hypernetwork.py                       | 103 ------------------
 modules/hypernetwork/hypernetwork.py          |  74 ++++++++-----
 modules/hypernetwork/ui.py                    |  10 +-
 modules/sd_hijack_optimizations.py            |   3 +-
 modules/shared.py                             |  13 ++-
 .../textual_inversion/textual_inversion.py    |  12 +-
 modules/ui.py                                 |   5 +-
 scripts/xy_grid.py                            |   3 +-
 webui.py                                      |  15 +--
 9 files changed, 78 insertions(+), 160 deletions(-)
 delete mode 100644 modules/hypernetwork.py

diff --git a/modules/hypernetwork.py b/modules/hypernetwork.py
deleted file mode 100644
index 7bbc443e..00000000
--- a/modules/hypernetwork.py
+++ /dev/null
@@ -1,103 +0,0 @@
-import glob
-import os
-import sys
-import traceback
-
-import torch
-
-from ldm.util import default
-from modules import devices, shared
-import torch
-from torch import einsum
-from einops import rearrange, repeat
-
-
-class HypernetworkModule(torch.nn.Module):
-    def __init__(self, dim, state_dict):
-        super().__init__()
-
-        self.linear1 = torch.nn.Linear(dim, dim * 2)
-        self.linear2 = torch.nn.Linear(dim * 2, dim)
-
-        self.load_state_dict(state_dict, strict=True)
-        self.to(devices.device)
-
-    def forward(self, x):
-        return x + (self.linear2(self.linear1(x)))
-
-
-class Hypernetwork:
-    filename = None
-    name = None
-
-    def __init__(self, filename):
-        self.filename = filename
-        self.name = os.path.splitext(os.path.basename(filename))[0]
-        self.layers = {}
-
-        state_dict = torch.load(filename, map_location='cpu')
-        for size, sd in state_dict.items():
-            self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1]))
-
-
-def list_hypernetworks(path):
-    res = {}
-    for filename in glob.iglob(os.path.join(path, '**/*.pt'), recursive=True):
-        name = os.path.splitext(os.path.basename(filename))[0]
-        res[name] = filename
-    return res
-
-
-def load_hypernetwork(filename):
-    path = shared.hypernetworks.get(filename, None)
-    if path is not None:
-        print(f"Loading hypernetwork {filename}")
-        try:
-            shared.loaded_hypernetwork = Hypernetwork(path)
-        except Exception:
-            print(f"Error loading hypernetwork {path}", file=sys.stderr)
-            print(traceback.format_exc(), file=sys.stderr)
-    else:
-        if shared.loaded_hypernetwork is not None:
-            print(f"Unloading hypernetwork")
-
-        shared.loaded_hypernetwork = None
-
-
-def apply_hypernetwork(hypernetwork, context):
-    hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
-
-    if hypernetwork_layers is None:
-        return context, context
-
-    context_k = hypernetwork_layers[0](context)
-    context_v = hypernetwork_layers[1](context)
-    return context_k, context_v
-
-
-def attention_CrossAttention_forward(self, x, context=None, mask=None):
-    h = self.heads
-
-    q = self.to_q(x)
-    context = default(context, x)
-
-    context_k, context_v = apply_hypernetwork(shared.loaded_hypernetwork, context)
-    k = self.to_k(context_k)
-    v = self.to_v(context_v)
-
-    q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
-
-    sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
-
-    if mask is not None:
-        mask = rearrange(mask, 'b ... -> b (...)')
-        max_neg_value = -torch.finfo(sim.dtype).max
-        mask = repeat(mask, 'b j -> (b h) () j', h=h)
-        sim.masked_fill_(~mask, max_neg_value)
-
-    # attention, what we cannot get enough of
-    attn = sim.softmax(dim=-1)
-
-    out = einsum('b i j, b j d -> b i d', attn, v)
-    out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
-    return self.to_out(out)
diff --git a/modules/hypernetwork/hypernetwork.py b/modules/hypernetwork/hypernetwork.py
index a3d6a47e..aa701bda 100644
--- a/modules/hypernetwork/hypernetwork.py
+++ b/modules/hypernetwork/hypernetwork.py
@@ -26,10 +26,11 @@ class HypernetworkModule(torch.nn.Module):
         if state_dict is not None:
             self.load_state_dict(state_dict, strict=True)
         else:
-            self.linear1.weight.data.fill_(0.0001)
-            self.linear1.bias.data.fill_(0.0001)
-            self.linear2.weight.data.fill_(0.0001)
-            self.linear2.bias.data.fill_(0.0001)
+
+            self.linear1.weight.data.normal_(mean=0.0, std=0.01)
+            self.linear1.bias.data.zero_()
+            self.linear2.weight.data.normal_(mean=0.0, std=0.01)
+            self.linear2.bias.data.zero_()
 
         self.to(devices.device)
 
@@ -92,41 +93,54 @@ class Hypernetwork:
         self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None)
 
 
-def load_hypernetworks(path):
+def list_hypernetworks(path):
     res = {}
+    for filename in glob.iglob(os.path.join(path, '**/*.pt'), recursive=True):
+        name = os.path.splitext(os.path.basename(filename))[0]
+        res[name] = filename
+    return res
 
-    for filename in glob.iglob(path + '**/*.pt', recursive=True):
+
+def load_hypernetwork(filename):
+    path = shared.hypernetworks.get(filename, None)
+    if path is not None:
+        print(f"Loading hypernetwork {filename}")
         try:
-            hn = Hypernetwork()
-            hn.load(filename)
-            res[hn.name] = hn
+            shared.loaded_hypernetwork = Hypernetwork()
+            shared.loaded_hypernetwork.load(path)
+
         except Exception:
-            print(f"Error loading hypernetwork {filename}", file=sys.stderr)
+            print(f"Error loading hypernetwork {path}", file=sys.stderr)
             print(traceback.format_exc(), file=sys.stderr)
+    else:
+        if shared.loaded_hypernetwork is not None:
+            print(f"Unloading hypernetwork")
 
-    return res
+        shared.loaded_hypernetwork = None
 
 
-def attention_CrossAttention_forward(self, x, context=None, mask=None):
-    h = self.heads
+def apply_hypernetwork(hypernetwork, context, layer=None):
+    hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
 
-    q = self.to_q(x)
-    context = default(context, x)
+    if hypernetwork_layers is None:
+        return context, context
 
-    hypernetwork_layers = (shared.hypernetwork.layers if shared.hypernetwork is not None else {}).get(context.shape[2], None)
+    if layer is not None:
+        layer.hyper_k = hypernetwork_layers[0]
+        layer.hyper_v = hypernetwork_layers[1]
 
-    if hypernetwork_layers is not None:
-        hypernetwork_k, hypernetwork_v = hypernetwork_layers
+    context_k = hypernetwork_layers[0](context)
+    context_v = hypernetwork_layers[1](context)
+    return context_k, context_v
 
-        self.hypernetwork_k = hypernetwork_k
-        self.hypernetwork_v = hypernetwork_v
 
-        context_k = hypernetwork_k(context)
-        context_v = hypernetwork_v(context)
-    else:
-        context_k = context
-        context_v = context
+def attention_CrossAttention_forward(self, x, context=None, mask=None):
+    h = self.heads
+
+    q = self.to_q(x)
+    context = default(context, x)
 
+    context_k, context_v = apply_hypernetwork(shared.loaded_hypernetwork, context, self)
     k = self.to_k(context_k)
     v = self.to_v(context_v)
 
@@ -151,7 +165,9 @@ def attention_CrossAttention_forward(self, x, context=None, mask=None):
 def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_image_prompt):
     assert hypernetwork_name, 'embedding not selected'
 
-    shared.hypernetwork = shared.hypernetworks[hypernetwork_name]
+    path = shared.hypernetworks.get(hypernetwork_name, None)
+    shared.loaded_hypernetwork = Hypernetwork()
+    shared.loaded_hypernetwork.load(path)
 
     shared.state.textinfo = "Initializing hypernetwork training..."
     shared.state.job_count = steps
@@ -176,9 +192,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
 
     shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
     with torch.autocast("cuda"):
-        ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, size=512, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file)
+        ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=1, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file)
 
-    hypernetwork = shared.hypernetworks[hypernetwork_name]
+    hypernetwork = shared.loaded_hypernetwork
     weights = hypernetwork.weights()
     for weight in weights:
         weight.requires_grad = True
@@ -194,7 +210,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
     if ititial_step > steps:
         return hypernetwork, filename
 
-    pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
+    pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
     for i, (x, text) in pbar:
         hypernetwork.step = i + ititial_step
 
diff --git a/modules/hypernetwork/ui.py b/modules/hypernetwork/ui.py
index 525f978c..f6d1d0a3 100644
--- a/modules/hypernetwork/ui.py
+++ b/modules/hypernetwork/ui.py
@@ -6,24 +6,24 @@ import gradio as gr
 import modules.textual_inversion.textual_inversion
 import modules.textual_inversion.preprocess
 from modules import sd_hijack, shared
+from modules.hypernetwork import hypernetwork
 
 
 def create_hypernetwork(name):
     fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
     assert not os.path.exists(fn), f"file {fn} already exists"
 
-    hypernetwork = modules.hypernetwork.hypernetwork.Hypernetwork(name=name)
-    hypernetwork.save(fn)
+    hypernet = modules.hypernetwork.hypernetwork.Hypernetwork(name=name)
+    hypernet.save(fn)
 
     shared.reload_hypernetworks()
-    shared.hypernetwork = shared.hypernetworks.get(shared.opts.sd_hypernetwork, None)
 
     return gr.Dropdown.update(choices=sorted([x for x in shared.hypernetworks.keys()])), f"Created: {fn}", ""
 
 
 def train_hypernetwork(*args):
 
-    initial_hypernetwork = shared.hypernetwork
+    initial_hypernetwork = shared.loaded_hypernetwork
 
     try:
         sd_hijack.undo_optimizations()
@@ -38,6 +38,6 @@ Hypernetwork saved to {html.escape(filename)}
     except Exception:
         raise
     finally:
-        shared.hypernetwork = initial_hypernetwork
+        shared.loaded_hypernetwork = initial_hypernetwork
         sd_hijack.apply_optimizations()
 
diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py
index 25cb67a4..27e571fc 100644
--- a/modules/sd_hijack_optimizations.py
+++ b/modules/sd_hijack_optimizations.py
@@ -8,7 +8,8 @@ from torch import einsum
 from ldm.util import default
 from einops import rearrange
 
-from modules import shared, hypernetwork
+from modules import shared
+from modules.hypernetwork import hypernetwork
 
 
 if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers:
diff --git a/modules/shared.py b/modules/shared.py
index 14b40d70..8753015e 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -13,7 +13,8 @@ import modules.memmon
 import modules.sd_models
 import modules.styles
 import modules.devices as devices
-from modules import sd_samplers, hypernetwork
+from modules import sd_samplers
+from modules.hypernetwork import hypernetwork
 from modules.paths import models_path, script_path, sd_path
 
 sd_model_file = os.path.join(script_path, 'model.ckpt')
@@ -29,6 +30,7 @@ parser.add_argument("--no-half-vae", action='store_true', help="do not switch th
 parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)")
 parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
 parser.add_argument("--embeddings-dir", type=str, default=os.path.join(script_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)")
+parser.add_argument("--hypernetwork-dir", type=str, default=os.path.join(models_path, 'hypernetworks'), help="hypernetwork directory")
 parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui")
 parser.add_argument("--medvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a little speed for low VRM usage")
 parser.add_argument("--lowvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a lot of speed for very low VRM usage")
@@ -82,10 +84,17 @@ parallel_processing_allowed = not cmd_opts.lowvram and not cmd_opts.medvram
 xformers_available = False
 config_filename = cmd_opts.ui_settings_file
 
-hypernetworks = hypernetwork.list_hypernetworks(os.path.join(models_path, 'hypernetworks'))
+hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
 loaded_hypernetwork = None
 
 
+def reload_hypernetworks():
+    global hypernetworks
+
+    hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
+    hypernetwork.load_hypernetwork(opts.sd_hypernetwork)
+
+
 class State:
     skipped = False
     interrupted = False
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index 5965c5a0..d6977950 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -156,7 +156,7 @@ def create_embedding(name, num_vectors_per_token, init_text='*'):
     return fn
 
 
-def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, num_repeats, create_image_every, save_embedding_every, template_file):
+def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, num_repeats, create_image_every, save_embedding_every, template_file, preview_image_prompt):
     assert embedding_name, 'embedding not selected'
 
     shared.state.textinfo = "Initializing textual inversion training..."
@@ -238,12 +238,14 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
         if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0:
             last_saved_image = os.path.join(images_dir, f'{embedding_name}-{embedding.step}.png')
 
+            preview_text = text if preview_image_prompt == "" else preview_image_prompt
+
             p = processing.StableDiffusionProcessingTxt2Img(
                 sd_model=shared.sd_model,
-                prompt=text,
+                prompt=preview_text,
                 steps=20,
-				height=training_height,
-				width=training_width,
+                height=training_height,
+                width=training_width,
                 do_not_save_grid=True,
                 do_not_save_samples=True,
             )
@@ -254,7 +256,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
             shared.state.current_image = image
             image.save(last_saved_image)
 
-            last_saved_image += f", prompt: {text}"
+            last_saved_image += f", prompt: {preview_text}"
 
         shared.state.job_no = embedding.step
 
diff --git a/modules/ui.py b/modules/ui.py
index 10b1ee3a..df653059 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -1023,7 +1023,7 @@ def create_ui(wrap_gradio_gpu_call):
                             gr.HTML(value="")
 
                         with gr.Column():
-                            create_embedding = gr.Button(value="Create", variant='primary')
+                            create_embedding = gr.Button(value="Create embedding", variant='primary')
 
                 with gr.Group():
                     gr.HTML(value="<p style='margin-bottom: 0.7em'>Create a new hypernetwork</p>")
@@ -1035,7 +1035,7 @@ def create_ui(wrap_gradio_gpu_call):
                             gr.HTML(value="")
 
                         with gr.Column():
-                            create_hypernetwork = gr.Button(value="Create", variant='primary')
+                            create_hypernetwork = gr.Button(value="Create hypernetwork", variant='primary')
 
                 with gr.Group():
                     gr.HTML(value="<p style='margin-bottom: 0.7em'>Preprocess images</p>")
@@ -1147,6 +1147,7 @@ def create_ui(wrap_gradio_gpu_call):
                 create_image_every,
                 save_embedding_every,
                 template_file,
+                preview_image_prompt,
             ],
             outputs=[
                 ti_output,
diff --git a/scripts/xy_grid.py b/scripts/xy_grid.py
index 42e1489c..0af5993c 100644
--- a/scripts/xy_grid.py
+++ b/scripts/xy_grid.py
@@ -10,7 +10,8 @@ import numpy as np
 import modules.scripts as scripts
 import gradio as gr
 
-from modules import images, hypernetwork
+from modules import images
+from modules.hypernetwork import hypernetwork
 from modules.processing import process_images, Processed, get_correct_sampler
 from modules.shared import opts, cmd_opts, state
 import modules.shared as shared
diff --git a/webui.py b/webui.py
index 7c200551..ba2156c8 100644
--- a/webui.py
+++ b/webui.py
@@ -29,6 +29,7 @@ from modules import devices
 from modules import modelloader
 from modules.paths import script_path
 from modules.shared import cmd_opts
+import modules.hypernetwork.hypernetwork
 
 modelloader.cleanup_models()
 modules.sd_models.setup_model()
@@ -77,22 +78,12 @@ def wrap_gradio_gpu_call(func, extra_outputs=None):
     return modules.ui.wrap_gradio_call(f, extra_outputs=extra_outputs)
 
 
-def set_hypernetwork():
-    shared.hypernetwork = shared.hypernetworks.get(shared.opts.sd_hypernetwork, None)
-
-
-shared.reload_hypernetworks()
-shared.opts.onchange("sd_hypernetwork", set_hypernetwork)
-set_hypernetwork()
-
-
 modules.scripts.load_scripts(os.path.join(script_path, "scripts"))
 
 shared.sd_model = modules.sd_models.load_model()
 shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model)))
 
-loaded_hypernetwork = modules.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)
-shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
+shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetwork.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
 
 
 def webui():
@@ -117,7 +108,7 @@ def webui():
             prevent_thread_lock=True
         )
         
-        app.add_middleware(GZipMiddleware,minimum_size=1000)
+        app.add_middleware(GZipMiddleware, minimum_size=1000)
 
         while 1:
             time.sleep(0.5)
-- 
GitLab