diff --git a/modules/cmd_args.py b/modules/cmd_args.py
index 7bde161e802b69ad8f04b66b016fb59204b7ca9a..85db93f36766794475c66f2bb81f492bd92e34df 100644
--- a/modules/cmd_args.py
+++ b/modules/cmd_args.py
@@ -53,16 +53,16 @@ parser.add_argument("--xformers", action='store_true', help="enable xformers for
 parser.add_argument("--force-enable-xformers", action='store_true', help="enable xformers for cross attention layers regardless of whether the checking code thinks you can run it; do not make bug reports if this fails to work")
 parser.add_argument("--xformers-flash-attention", action='store_true', help="enable xformers with Flash Attention to improve reproducibility (supported for SD2.x or variant only)")
 parser.add_argument("--deepdanbooru", action='store_true', help="does not do anything")
-parser.add_argument("--opt-split-attention", action='store_true', help="force-enables Doggettx's cross-attention layer optimization. By default, it's on for torch cuda.")
-parser.add_argument("--opt-sub-quad-attention", action='store_true', help="enable memory efficient sub-quadratic cross-attention layer optimization")
+parser.add_argument("--opt-split-attention", action='store_true', help="prefer Doggettx's cross-attention layer optimization for automatic choice of optimization")
+parser.add_argument("--opt-sub-quad-attention", action='store_true', help="prefer memory efficient sub-quadratic cross-attention layer optimization for automatic choice of optimization")
 parser.add_argument("--sub-quad-q-chunk-size", type=int, help="query chunk size for the sub-quadratic cross-attention layer optimization to use", default=1024)
 parser.add_argument("--sub-quad-kv-chunk-size", type=int, help="kv chunk size for the sub-quadratic cross-attention layer optimization to use", default=None)
 parser.add_argument("--sub-quad-chunk-threshold", type=int, help="the percentage of VRAM threshold for the sub-quadratic cross-attention layer optimization to use chunking", default=None)
-parser.add_argument("--opt-split-attention-invokeai", action='store_true', help="force-enables InvokeAI's cross-attention layer optimization. By default, it's on when cuda is unavailable.")
-parser.add_argument("--opt-split-attention-v1", action='store_true', help="enable older version of split attention optimization that does not consume all the VRAM it can find")
-parser.add_argument("--opt-sdp-attention", action='store_true', help="enable scaled dot product cross-attention layer optimization; requires PyTorch 2.*")
-parser.add_argument("--opt-sdp-no-mem-attention", action='store_true', help="enable scaled dot product cross-attention layer optimization without memory efficient attention, makes image generation deterministic; requires PyTorch 2.*")
-parser.add_argument("--disable-opt-split-attention", action='store_true', help="force-disables cross-attention layer optimization")
+parser.add_argument("--opt-split-attention-invokeai", action='store_true', help="prefer InvokeAI's cross-attention layer optimization for automatic choice of optimization")
+parser.add_argument("--opt-split-attention-v1", action='store_true', help="prefer older version of split attention optimization for automatic choice of optimization")
+parser.add_argument("--opt-sdp-attention", action='store_true', help="prefer scaled dot product cross-attention layer optimization for automatic choice of optimization; requires PyTorch 2.*")
+parser.add_argument("--opt-sdp-no-mem-attention", action='store_true', help="prefer scaled dot product cross-attention layer optimization without memory efficient attention for automatic choice of optimization, makes image generation deterministic; requires PyTorch 2.*")
+parser.add_argument("--disable-opt-split-attention", action='store_true', help="does not do anything")
 parser.add_argument("--disable-nan-check", action='store_true', help="do not check if produced images/latent spaces have nans; useful for running without a checkpoint in CI")
 parser.add_argument("--use-cpu", nargs='+', help="use CPU as torch device for specified modules", default=[], type=str.lower)
 parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests")
diff --git a/modules/script_callbacks.py b/modules/script_callbacks.py
index 3c21a36288450a76bc027327bdacc7fe25656139..40f388a59bbe402565787a51c42451b7d5497caa 100644
--- a/modules/script_callbacks.py
+++ b/modules/script_callbacks.py
@@ -110,6 +110,7 @@ callback_map = dict(
     callbacks_script_unloaded=[],
     callbacks_before_ui=[],
     callbacks_on_reload=[],
+    callbacks_list_optimizers=[],
 )
 
 
@@ -258,6 +259,18 @@ def before_ui_callback():
             report_exception(c, 'before_ui')
 
 
+def list_optimizers_callback():
+    res = []
+
+    for c in callback_map['callbacks_list_optimizers']:
+        try:
+            c.callback(res)
+        except Exception:
+            report_exception(c, 'list_optimizers')
+
+    return res
+
+
 def add_callback(callbacks, fun):
     stack = [x for x in inspect.stack() if x.filename != __file__]
     filename = stack[0].filename if len(stack) > 0 else 'unknown file'
@@ -409,3 +422,11 @@ def on_before_ui(callback):
     """register a function to be called before the UI is created."""
 
     add_callback(callback_map['callbacks_before_ui'], callback)
+
+
+def on_list_optimizers(callback):
+    """register a function to be called when UI is making a list of cross attention optimization options.
+    The function will be called with one argument, a list, and shall add objects of type modules.sd_hijack_optimizations.SdOptimization
+    to it."""
+
+    add_callback(callback_map['callbacks_list_optimizers'], callback)
diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py
index 14e7f79938fbf640b15db183075e580b2131bead..39193be8e825c4dccf9812698caa57cf2e386e78 100644
--- a/modules/sd_hijack.py
+++ b/modules/sd_hijack.py
@@ -3,8 +3,9 @@ from torch.nn.functional import silu
 from types import MethodType
 
 import modules.textual_inversion.textual_inversion
-from modules import devices, sd_hijack_optimizations, shared
+from modules import devices, sd_hijack_optimizations, shared, script_callbacks, errors
 from modules.hypernetworks import hypernetwork
+from modules.sd_hijack_optimizations import diffusionmodules_model_AttnBlock_forward
 from modules.shared import cmd_opts
 from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet, sd_hijack_xlmr, xlmr
 
@@ -28,57 +29,56 @@ ldm.modules.attention.BasicTransformerBlock.ATTENTION_MODES["softmax-xformers"]
 ldm.modules.attention.print = lambda *args: None
 ldm.modules.diffusionmodules.model.print = lambda *args: None
 
+optimizers = []
+current_optimizer: sd_hijack_optimizations.SdOptimization = None
+
+
+def list_optimizers():
+    new_optimizers = script_callbacks.list_optimizers_callback()
+
+    new_optimizers = [x for x in new_optimizers if x.is_available()]
+
+    new_optimizers = sorted(new_optimizers, key=lambda x: x.priority(), reverse=True)
+
+    optimizers.clear()
+    optimizers.extend(new_optimizers)
+
 
 def apply_optimizations():
+    global current_optimizer
+
     undo_optimizations()
 
     ldm.modules.diffusionmodules.model.nonlinearity = silu
     ldm.modules.diffusionmodules.openaimodel.th = sd_hijack_unet.th
 
-    optimization_method = None
+    if current_optimizer is not None:
+        current_optimizer.undo()
+        current_optimizer = None
+
+    selection = shared.opts.cross_attention_optimization
+    if selection == "Automatic" and len(optimizers) > 0:
+        matching_optimizer = next(iter([x for x in optimizers if x.cmd_opt and getattr(shared.cmd_opts, x.cmd_opt, False)]), optimizers[0])
+    else:
+        matching_optimizer = next(iter([x for x in optimizers if x.title() == selection]), None)
 
-    can_use_sdp = hasattr(torch.nn.functional, "scaled_dot_product_attention") and callable(torch.nn.functional.scaled_dot_product_attention) # not everyone has torch 2.x to use sdp
-
-    if cmd_opts.force_enable_xformers or (cmd_opts.xformers and shared.xformers_available and torch.version.cuda and (6, 0) <= torch.cuda.get_device_capability(shared.device) <= (9, 0)):
-        print("Applying xformers cross attention optimization.")
-        ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.xformers_attention_forward
-        ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.xformers_attnblock_forward
-        optimization_method = 'xformers'
-    elif cmd_opts.opt_sdp_no_mem_attention and can_use_sdp:
-        print("Applying scaled dot product cross attention optimization (without memory efficient attention).")
-        ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.scaled_dot_product_no_mem_attention_forward
-        ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.sdp_no_mem_attnblock_forward
-        optimization_method = 'sdp-no-mem'
-    elif cmd_opts.opt_sdp_attention and can_use_sdp:
-        print("Applying scaled dot product cross attention optimization.")
-        ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.scaled_dot_product_attention_forward
-        ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.sdp_attnblock_forward
-        optimization_method = 'sdp'
-    elif cmd_opts.opt_sub_quad_attention:
-        print("Applying sub-quadratic cross attention optimization.")
-        ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.sub_quad_attention_forward
-        ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.sub_quad_attnblock_forward
-        optimization_method = 'sub-quadratic'
-    elif cmd_opts.opt_split_attention_v1:
-        print("Applying v1 cross attention optimization.")
-        ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1
-        optimization_method = 'V1'
-    elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention_invokeai or not cmd_opts.opt_split_attention and not torch.cuda.is_available()):
-        print("Applying cross attention optimization (InvokeAI).")
-        ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_invokeAI
-        optimization_method = 'InvokeAI'
-    elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention or torch.cuda.is_available()):
-        print("Applying cross attention optimization (Doggettx).")
-        ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward
-        ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.cross_attention_attnblock_forward
-        optimization_method = 'Doggettx'
-
-    return optimization_method
+    if selection == "None":
+        matching_optimizer = None
+    elif matching_optimizer is None:
+        matching_optimizer = optimizers[0]
+
+    if matching_optimizer is not None:
+        print(f"Applying optimization: {matching_optimizer.name}")
+        matching_optimizer.apply()
+        current_optimizer = matching_optimizer
+        return current_optimizer.name
+    else:
+        return ''
 
 
 def undo_optimizations():
-    ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward
     ldm.modules.diffusionmodules.model.nonlinearity = diffusionmodules_model_nonlinearity
+    ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward
     ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward
 
 
@@ -169,7 +169,11 @@ class StableDiffusionModelHijack:
         if m.cond_stage_key == "edit":
             sd_hijack_unet.hijack_ddpm_edit()
 
-        self.optimization_method = apply_optimizations()
+        try:
+            self.optimization_method = apply_optimizations()
+        except Exception as e:
+            errors.display(e, "applying cross attention optimization")
+            undo_optimizations()
 
         self.clip = m.cond_stage_model
 
@@ -223,6 +227,10 @@ class StableDiffusionModelHijack:
 
         return token_count, self.clip.get_target_prompt_token_count(token_count)
 
+    def redo_hijack(self, m):
+        self.undo_hijack(m)
+        self.hijack(m)
+
 
 class EmbeddingsWithFixes(torch.nn.Module):
     def __init__(self, wrapped, embeddings):
diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py
index f00fe55cb012193a9c9ffc09ba49bdbc427ab92b..1c5b709ba4bbfb6f5a61cd8e5ec0368978bd799a 100644
--- a/modules/sd_hijack_optimizations.py
+++ b/modules/sd_hijack_optimizations.py
@@ -9,10 +9,139 @@ from torch import einsum
 from ldm.util import default
 from einops import rearrange
 
-from modules import shared, errors, devices
+from modules import shared, errors, devices, sub_quadratic_attention, script_callbacks
 from modules.hypernetworks import hypernetwork
 
-from .sub_quadratic_attention import efficient_dot_product_attention
+import ldm.modules.attention
+import ldm.modules.diffusionmodules.model
+
+diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward
+
+
+class SdOptimization:
+    def __init__(self, name, label=None, cmd_opt=None):
+        self.name = name
+        self.label = label
+        self.cmd_opt = cmd_opt
+
+    def title(self):
+        if self.label is None:
+            return self.name
+
+        return f"{self.name} - {self.label}"
+
+    def is_available(self):
+        return True
+
+    def priority(self):
+        return 0
+
+    def apply(self):
+        pass
+
+    def undo(self):
+        ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward
+        ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward
+
+
+class SdOptimizationXformers(SdOptimization):
+    def __init__(self):
+        super().__init__("xformers", cmd_opt="xformers")
+
+    def is_available(self):
+        return shared.cmd_opts.force_enable_xformers or (shared.xformers_available and torch.version.cuda and (6, 0) <= torch.cuda.get_device_capability(shared.device) <= (9, 0))
+
+    def priority(self):
+        return 100
+
+    def apply(self):
+        ldm.modules.attention.CrossAttention.forward = xformers_attention_forward
+        ldm.modules.diffusionmodules.model.AttnBlock.forward = xformers_attnblock_forward
+
+
+class SdOptimizationSdpNoMem(SdOptimization):
+    def __init__(self, name="sdp-no-mem", label="scaled dot product without memory efficient attention", cmd_opt="opt_sdp_no_mem_attention"):
+        super().__init__(name, label, cmd_opt)
+
+    def is_available(self):
+        return hasattr(torch.nn.functional, "scaled_dot_product_attention") and callable(torch.nn.functional.scaled_dot_product_attention)
+
+    def priority(self):
+        return 90
+
+    def apply(self):
+        ldm.modules.attention.CrossAttention.forward = scaled_dot_product_no_mem_attention_forward
+        ldm.modules.diffusionmodules.model.AttnBlock.forward = sdp_no_mem_attnblock_forward
+
+
+class SdOptimizationSdp(SdOptimizationSdpNoMem):
+    def __init__(self):
+        super().__init__("sdp", "scaled dot product", cmd_opt="opt_sdp_attention")
+
+    def priority(self):
+        return 80
+
+    def apply(self):
+        ldm.modules.attention.CrossAttention.forward = scaled_dot_product_attention_forward
+        ldm.modules.diffusionmodules.model.AttnBlock.forward = sdp_attnblock_forward
+
+
+class SdOptimizationSubQuad(SdOptimization):
+    def __init__(self):
+        super().__init__("sub-quadratic", cmd_opt="opt_sub_quad_attention")
+
+    def priority(self):
+        return 10
+
+    def apply(self):
+        ldm.modules.attention.CrossAttention.forward = sub_quad_attention_forward
+        ldm.modules.diffusionmodules.model.AttnBlock.forward = sub_quad_attnblock_forward
+
+
+class SdOptimizationV1(SdOptimization):
+    def __init__(self):
+        super().__init__("V1", "original v1", cmd_opt="opt_split_attention_v1")
+
+    def priority(self):
+        return 10
+
+    def apply(self):
+        ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward_v1
+
+
+class SdOptimizationInvokeAI(SdOptimization):
+    def __init__(self):
+        super().__init__("InvokeAI", cmd_opt="opt_split_attention_invokeai")
+
+    def priority(self):
+        return 1000 if not torch.cuda.is_available() else 10
+
+    def apply(self):
+        ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward_invokeAI
+
+
+class SdOptimizationDoggettx(SdOptimization):
+    def __init__(self):
+        super().__init__("Doggettx", cmd_opt="opt_split_attention")
+
+    def priority(self):
+        return 20
+
+    def apply(self):
+        ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward
+        ldm.modules.diffusionmodules.model.AttnBlock.forward = cross_attention_attnblock_forward
+
+
+def list_optimizers(res):
+    res.extend([
+        SdOptimizationXformers(),
+        SdOptimizationSdpNoMem(),
+        SdOptimizationSdp(),
+        SdOptimizationSubQuad(),
+        SdOptimizationV1(),
+        SdOptimizationInvokeAI(),
+        SdOptimizationDoggettx(),
+    ])
 
 
 if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers:
@@ -299,7 +428,7 @@ def sub_quad_attention(q, k, v, q_chunk_size=1024, kv_chunk_size=None, kv_chunk_
         kv_chunk_size = k_tokens
 
     with devices.without_autocast(disable=q.dtype == v.dtype):
-        return efficient_dot_product_attention(
+        return sub_quadratic_attention.efficient_dot_product_attention(
             q,
             k,
             v,
diff --git a/modules/shared.py b/modules/shared.py
index fdbab5c414d9ed1a7ebf0fe8f07bcb957b62ed7b..7cfbaa0cae3a82d6eb93e56f8b2c7711d0559f00 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -417,6 +417,7 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
 }))
 
 options_templates.update(options_section(('optimizations', "Optimizations"), {
+    "cross_attention_optimization": OptionInfo("Automatic", "Cross attention optimization", gr.Dropdown, lambda: {"choices": shared_items.cross_attention_optimizations()}),
     "s_min_uncond": OptionInfo(0, "Negative Guidance minimum sigma", gr.Slider, {"minimum": 0.0, "maximum": 4.0, "step": 0.01}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9177").info("skip negative prompt for some steps when the image is almost ready; 0=disable, higher=faster"),
     "token_merging_ratio": OptionInfo(0.0, "Token merging ratio", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9256").info("0=disable, higher=faster"),
     "token_merging_ratio_img2img": OptionInfo(0.0, "Token merging ratio for img2img", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"),
diff --git a/modules/shared_items.py b/modules/shared_items.py
index e792a1349a2aaf763f3ede98479d0a2b5d92a454..2a8713c8716f436f99b354fb8a22dc437a4573fb 100644
--- a/modules/shared_items.py
+++ b/modules/shared_items.py
@@ -21,3 +21,11 @@ def refresh_vae_list():
     import modules.sd_vae
 
     modules.sd_vae.refresh_vae_list()
+
+
+def cross_attention_optimizations():
+    import modules.sd_hijack
+
+    return ["Automatic"] + [x.title() for x in modules.sd_hijack.optimizers] + ["None"]
+
+
diff --git a/webui.py b/webui.py
index b4a21e736613bffe22e9dc2d2741a43388c0084d..afe3c5faec35815e81fa41e15a6e0c86f5ed8ed9 100644
--- a/webui.py
+++ b/webui.py
@@ -52,6 +52,7 @@ import modules.img2img
 import modules.lowvram
 import modules.scripts
 import modules.sd_hijack
+import modules.sd_hijack_optimizations
 import modules.sd_models
 import modules.sd_vae
 import modules.txt2img
@@ -200,6 +201,10 @@ def initialize():
     modules.textual_inversion.textual_inversion.list_textual_inversion_templates()
     startup_timer.record("refresh textual inversion templates")
 
+    modules.script_callbacks.on_list_optimizers(modules.sd_hijack_optimizations.list_optimizers)
+    modules.sd_hijack.list_optimizers()
+    startup_timer.record("scripts list_optimizers")
+
     # load model in parallel to other startup stuff
     Thread(target=lambda: shared.sd_model).start()
 
@@ -208,6 +213,7 @@ def initialize():
     shared.opts.onchange("sd_vae_as_default", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
     shared.opts.onchange("temp_dir", ui_tempdir.on_tmpdir_changed)
     shared.opts.onchange("gradio_theme", shared.reload_gradio_theme)
+    shared.opts.onchange("cross_attention_optimization", wrap_queued_call(lambda: modules.sd_hijack.model_hijack.redo_hijack(shared.sd_model)), call=False)
     startup_timer.record("opts onchange")
 
     shared.reload_hypernetworks()
@@ -428,6 +434,10 @@ def webui():
         extra_networks.register_extra_network(extra_networks_hypernet.ExtraNetworkHypernet())
         startup_timer.record("initialize extra networks")
 
+        modules.script_callbacks.on_list_optimizers(modules.sd_hijack_optimizations.list_optimizers)
+        modules.sd_hijack.list_optimizers()
+        startup_timer.record("scripts list_optimizers")
+
 
 if __name__ == "__main__":
     if cmd_opts.nowebui: